Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет наук о материалах

УТВЕРЖДАЮ Зам. декана ФНМ по учебной работе /А.В. Кнотько / «»2016 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Наименование дисциплины:
Плазменные процессы нанесения неорганических покрытий
Уровень высшего образования: магистратура
Направление подготовки:
04.04.02 Химия, физика и механика материалов
Направленность (профиль)/специализация ОПОП: Фундаментальное материаловедение
Форма обучения: очная
Рабочая программа рассмотрена и одобрена
Методической комиссией факультета наук о материалах
(протокол №, дата)

- **1.** Место дисциплины в структуре ОПОП ВО: Вариативная часть, профессиональная подготовка, дисциплина магистерской программы по выбору студентов, курс предназначен для студентов магистратуры факультета наук о материалах **2-го года обучения (3-й семестр),** курс является обязательным
- 2. Входные требования для освоения дисциплины, предварительные условия (если есть):

Дисциплины и модули профессиональной подготовки бакалавриата Современные проблемы материаловедения Перспективные неорганические материалы со специальными функциями

3. Результаты обучения по дисциплине:

Знать: физико-химические основы процесса формирования покрытий низкотемпературной плазмой

Уметь: использовать плазменные методы нанесения покрытия для решения материаловедческих залач

Владеть: навыками правильной постановки и выполнения экспериментальной работы с использованием низкотемпературной плазмы

- 4. Объем дисциплины составляет 2 з.е. (72 ак.ч.)
- 5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий:
- 5.1. Структура дисциплины по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий (в строгом соответствии с учебным планом)

Вид работы	Семестр		Всего
	Общая трудоёмкость, акад. Часов	72	
Аудиторная работа:	24		24
Лекции, акад. Часов	24		24
Семинары, акад. Часов			
Лабораторные работы, акад. часов			
Самостоятельная работа, акад. Часов	48		48
Вид итогового контроля (зачёт, экзамен)	Экз.		

5.2. Содержание разделов (тем) дисциплины

1. Введение.

Физика плазмы. Генераторы плазмы. Оборудование. Основные принципы физических методов нанесения покрытий. Области применения плазменной технологии нанесения покрытий.

Состав плазмообразующих газов, энергетика плазменных струй. Генераторы плазменных струй (плазмотрон и другие устройства) для нанесения покрытий из прекурсоров разного типа порошка, проволоки и суспензии. Технологическое оборудование для нанесения в разных средах (атмосфера воздуха, с местной защитой, в инертной атмосфере, в динамическом вакууме. Системы подачи прекурсоров в плазменную струю (порошковые питатели, механизмы подачи проволоки). Теплофизика плазменного формирования покрытия: тепловые потоки плазмы, частиц, теплоотвод в подложку и окружающее газовое пространство, относительное перемещение подложки и

плазмотрона, роботизация. Структура участка для плазменного напыления покрытий, техника безопасности (порошки, световое излучение, шум).

2. Требования к прекурсорам.

Металлы и сплавы в виде проволоки, доэвтектические составы. Порошки, формируемые распылением расплава, в том числе эвтектического состава. Композиционные порошки: механические смеси, механически легированные составы (заэвтектические, керметы), агломерированные, полученные спеканием и дроблением. Растворы и суспензии. Структура и свойства напыляемых материалов.

3. Физико-химические и механические процессы в плазменной струе.

Распыление проволоки плазмой: взаимодействие плазменной струи с цилиндрическим телом. Распыление порошковых материалов: взаимодействие плазмы с частицами порошка, изменения их фазового состава, структуры, физического и химического состояния и частиц порошка, испарение. Теплофизические свойства плазмообразующих газов. Геометрические размеры дуги. КПД перехода тепла дугового разряда плазмообразующему газу. Плазмотроны с межсекционными вставками. Место ввод порошка в плазменную струю. Основы выбора режимов плазменного распыления порошковых материалов по их теплофизическим свойствам (критерии), структуре и размерам и требованиям к сохранению структуры и механических свойств подложек, на которых формируются покрытия. Контроль температуры и скорости плазменных частиц, температуры подложки.

- 4. Изменение структуры и химического состава напыляемых частиц в плазменной струе. Влияние температуры и химического состава плазменной струи на структуру, химический и фазовый состав напыляемых частиц. Напыление материалов в атмосфере воздуха, с местной защитой, в инертной (и разреженной) атмосфере.
- 5. Условия формирования напыляемых частиц на подложке. Изменение физических, химических и механических свойств, структуры и фазового состава напыляемого материала при формировании покрытия на подложке.

Подготовка подложки перед напылением: абразивная и ультразвуковая обработки, подогрев, активация подложки дуговым разрядом, лазером. Соударение одиночной напыляемой частицы с подложкой: деформация, затвердевание, охлаждение. Теплофизика затвердевания и охлаждения одиночной частицы, скорость охлаждения. Физическое и химическое взаимодействие напыляемой частицы с подложкой, формирование между ними соединения. Поведение системы одиночная частица — подложка с учетов их температуры, скорости напыляемой частицы и шероховатости подложки. Остаточные напряжения в металлических и керамических покрытиях, методы их снижения, уменьшение концентрации напряжений на границе подложка покрытие. Родственные процессы соединения материалов, перспективы повышения адгезии и когезии плазменных покрытия. Типы напыленных частиц в покрытии. Формирование макро-, микро- и субструктуры, пористости и шероховатости покрытия.

6. Изменение структуры основных напыляемых материалов в покрытии. Способы управления структурой. Методы исследования плазменных покрытий

Изменение макро-, микро- и субструктуры напыляемых материалов на подложке: чистые металлы, твердые растворы, двух- и многофазные сплавы, оксиды. Управление структурой плазменных покрытий. Сплавы эвтектического и заэвтектического состава. Химические соединения, интерметаллиды. Модельные материалы: Al-Fe Fe-B.

Методы исследования покрытий: рентген, химический анализ основных элементов и газовых примесей (азот и кислород), ДТА, определение механических свойств, оптическая и электронная (растровая и на просвет) микроскопия структуры, удельное электросопротивление, ртутная порометрия.

7. Механические свойства плазменных покрытий.

Влияние параметров напыления (температура и скорость частиц, температура подложки) на структуру (пористость) и механические свойства (модуль упругости, адгезия, когезия, сдвиг, механические свойства при растяжении). Чистые металлы, сплавы в том числе с легирующими элементами с малой растворимостью в равновесном состоянии (Al-Fe), сплавы эвтектического и

заэвтектического составов, карбиды, оксиды. Остаточные напряжения в покрытии, влияние подслоев на работоспособность покрытия. Теплозащитные покрытия, термоциклика.

8. Формирование покрытий со специальной макро- и микроструктурой структурой.

Покрытия с регулируемой пористостью: теплозащитные покрытия, трехмерные капиллярно – пористые покрытия для композиционного материала «имплантат – костная ткань». Покрытия на нерасходуемых анодах. Плазменно – напыленные планарные дискретно армированные композиционные материалы. Волокнистые композиционные материалы с борными волокнами и напыленной алюминиевой матрицей, зависимость прочностных свойств волокон от межфазного взаимодействия волокна с матрицей.

9. Плазменные покрытия с нано и аморфной структурой.

Аморфные магнитно мягкие покрытия для экранирования электромагнитного излучения. Износостойкие керметные наноструктурные покрытия на основе карбидов вольфрама и титана. Коррозионностойкие покрытия.

10. Влияние термической и термопластической обработок на структуру и механические свойства плазменных покрытий.

Изменение структуры и фазового состава плазменных покрытий при термообработке. Электромеханическая обработка покрытий: изменение структуры (пористость, суб- и микроструктура) и механических свойств. Горячее прессование покрытий (WC-Co), получение волокнистых композиционных материалов с алюминиевой, молибденовой, интерметаллидной (TiAl) матрицами. Изменение структуры и физико – механических свойств напыленного алюминия при прокатке.

11. Будущее плазменного напыления.

Современные варианты плазменного способа напыления, основные проблемы и развитие: оборудование и распыляемые материалы.

- 6. Фонд оценочных средств (ФОС, оценочные и методические материалы) для оценивания результатов обучения по дисциплине (модулю).
- 6.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости, критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

Собеседование по материалу прослушанных лекций

- 6.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации по дисциплине (модулю), критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)
- 1. Введение. Физика плазмы. Генераторы плазмы. Современные варианты плазменного способа напыления, основные проблемы и развитие: оборудование и распыляемые материалы.
- 2. Требования к прекурсорам
- 3. Физико-химические и механические процессы в плазменной струе
- 4. Изменение структуры и химического состава напыляемых частиц в плазменной струе
- 5. Условия формирования напыляемых частиц на подложке. Изменение физических, химических и механических свойств, структуры и фазового состава напыляемого материала при формировании покрытия на подложке.
- 6. Изменение структуры основных напыляемых материалов в покрытии. Способы управления структурой.

Методы исследования плазменных покрытий

- 7. Механические свойства плазменных покрытий
- 8. Формирование покрытий со специальной макро- и микроструктурой структурой.
- 9. Плазменные покрытия с нано и аморфной структурой

10. Влияние термической и термопластической обработок на структуру и механические свойства плазменных покрытий

7. Ресурсное обеспечение:

7.1. Перечень основной и дополнительной литературы

- 1. Теория и технология формирования неорганических покрытий: монография/Г.В. Бобров, А.А. Ильин, В.С. Спектор. –М.: Альфа М, 2014.-928 с.:ил.
- 2. Иевлев В.М. Тонкие пленки неорганических материалов: Механизм роста и субструктура : учеб. пособие / В.М. Иевлев. Воронеж: ИПЦ ВГУ, 2008. 496 с.
- 3. Порошковая металлургия и напыленные покрытия. В. Н. Анциферов и др. М. Металлургия. 1987. 792 с.
- 4. Хасуи А., Моригаки О. Наплавка и напыление. М.: Машиностроение, 1985. 240 с.
- 5. Кудинов В.В. Плазменные покрытия. М.: Наука, 1977. 184с.
- 6. Борисов Ю.С., Борисова А.Л. Плазменные порошковые покрытия. К: Техника. 1986. 233 с.
- 6.2. Перечень лицензионного программного обеспечения, в том числе отечественного производства (подлежит обновлению при необходимости)

 Не требуется
- 6.3. Описание материально-технического обеспечения. аудитория с доской, компьютерный проектор
- 8.Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.
- 7. Разработчик (разработчики) программы. д.т.н. В.И. Калита