Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет наук о материалах

УТВЕРЖДАЮ
Зам. декана ФНМ по учебной
работе
/А.В. Кнотько /
« <u>_</u> »2016 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Наименование дисциплины:
Структурная химия и кристаллохимия
Уровень высшего образования:
бакалавриат
Направление подготовки:
04.03.02 Химия, физика и механика материалов
Направленность (профиль)/специализация ОПОП:
общий
Форма обучения: очная
Рабочая программа рассмотрена и одобрена
Методической комиссией факультета наук о материалах
(протокол №, дата)

- **1.** Место дисциплины в структуре ОПОП ВО: базовая часть, профессиональная подготовка, модуль «Химия материалов», курс предназначен для студентов факультета наук о материалах **3-го года обучения (6-й семестр),** курс является обязательным
- 2. Входные требования для освоения дисциплины, предварительные условия (если есть):

Общая химия и химия элементов Математический анализ Высшая алгебра и аналитическая геометрия Квантовая физика Материалы – прошлое, настоящее, будущее

3. Результаты обучения по дисциплине:

Знать: основные законы и закономерности строения кристаллических веществ, способы аналитического и графического представления кристаллической структуры

Уметь: формулировать конкретные структурно-химические задачи на основе законов и закономерностей, освоенных в курсе кристаллохимии; пользоваться данными рентгенофазового и рентгеноструктурного анализа в химических исследованиях, обобщать полученные результаты Владеть: приемами построения графиков точечных и простейших пространственных групп, методами определения орбит группы, навыками поиска структурно-химических данных в открытых источника (в том числе, в банках структурных данных) и применения их при решении практических химических задач

- 4. Объем дисциплины составляет 4 з.е. (144 ак.ч.)
- 5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий:
- 5.1. Структура дисциплины по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий (в строгом соответствии с учебным планом)

Вид работы	Семест	_
		Всего
	6	
Общая трудоёмкость, акад. Часов	144	144
Аудиторная работа:	96	96
Лекции, акад. Часов	48	48
Семинары, акад. Часов	48	48
Лабораторные работы, акад. часов		
Самостоятельная работа, акад. Часов	48	48
Вид итогового контроля (зачёт, экзамен)	Экз.	

5.2. Содержание разделов (тем) дисциплины

1. Точечные группы симметрии конечных фигур и молекул. 16 ч.

Операции и элементы симметрии. Взаимодействие операций. Собственные и несобственные вращения, хиральные фигуры. Группа операций симметрии. Геометрические образы несобственных вращений в системах Шенфлиса и Германа-Могена, взаимосвязь порядков зеркально-поворотных и инверсионных осей.

Категории симметрии и семейства точечных групп по Шенфлису и Герману-Могену. Точечные группы геометрических фигур и молекул. Симметрия правильных многогранников (платоновых

тел). Формула Эйлера. Орбита точечной группы, кратность орбиты и локальная симметрия ее точек. Симметрически независимая область фигуры. Предельные группы бесконечного порядка (группы Кюри).

2. Группы симметрии кристаллов 16 ч.

Трансляционная симметрия и кристаллическая решетка, параметры элементарной ячейки. Кристаллографические закрытые элементы симметрии. Сингонии, голоэдрические группы, кристаллографические классы, классы Лауэ. Связь кристаллографического класса с физическими свойствами. Решетки Браве. Фракционные координаты точки в элементарной ячейке. Кристаллографические направления и кристаллографические плоскости в решетке..

Открытые кристаллографические элементы симметрии, их обозначения и действие. Оси, входящие в состав осей 4k и 6k; энантиоморфные винтовые оси. Взаимодействие открытых и закрытых элементов между собой; их взаимодействие с перпендикулярными и наклонными трансляциями.

Пространственные группы, их символы по Герману-Могену, связь с кристаллографическим классом. Симморфные и несимморфные группы. Системы эквивалентных позиций (орбиты) пространственных групп, кратность общей позиции. Графики простейших групп низших и средних сингоний, их построение по правилам взаимодействия элементов симметрии. Интернациональные таблицы и содержащаяся в них информация о пространственных группах.

3. Методы исследования атомной структуры кристаллов 16 ч.

Принцип работы и спектр рентгеновской трубки. Тормозное излучение и характеристические линии. Синхротронное излучение, выработка рентгеновского СИ в ускорителе электронов (накопительном кольце). Дифракция рентгеновского излучения на кристалле. Формула Брегга, кристаллы-монохроматоры. Блок-схема рентгеновского дифрактометра. Мозаичное строение реального кристалла, зависимость полуширины рефлекса от размера области когерентного рассеяния, формула Шерера.

Межплоскостные расстояния и индексы рефлексов, понятие об обратной решетке. Индицирование порошковых дифрактограмм в рентгенофазовом анализе. Относительные интенсивности рефлексов, корундовое число. Закон Фриделя. Банк порошковых данных ICDD. Систематические погасания рефлексов.

Атомный фактор рассеяния. Интегральные интенсивности рефлексов и структурные амплитуды Fhkl. Понятие о проблеме фаз и методах расшифровки кристаллических структур. Основные этапы рентгеноструктурного анализа монокристаллов (PCA). Параметры тепловых колебаний, Rфактор. Представление данных PCA в химических статьях. Банки структурных данных: поиск и обработка содержащейся в них структурной информации.

Основы колебательной спектроскопии, проблемы динамики неорганических характеризующихся большими амплитудами колебаний и существенным ангармонизмом, и использование теории возмущений при теоретическом (базирующемся ИХ квантовомеханических расчетах силовых полей) и полуэмпирическом анализе, задача о взаимодействии излучения с веществом рассматривается в рамках математического аппарата теории представлений точечных и пространственных групп, проблемы интерпретации спектров твердых тел, связанные с необходимостью учета макроскопических эффектов, искажающих оптические свойства кристаллов.

4. Атомная структурапростых веществ 16 ч.

Межатомные взаимодействия в кристаллических металлах, зависимость физических свойств металлов от их строения и межатомного связывания. Металлические радиусы. Структуры металлов: плотные и плотнейшие шаровые упаковки (ПК, ПГ, ОЦК, ГПУ, ГЦК); виды и размеры пустот. Полиморфизм и изоморфизм в металлах, многослойные шаровые упаковки. Твердые растворы замещения и внедрения. Простейший интерметаллид Cu3Au, фазовый переход «порядок – беспорядок». Понятие о кластерах и наночастицах металлов. Особенности строения простых

веществ для элементов, примыкающих к неметаллам в Периодической системе, искажения плотнейших упаковок.

Принципы строения неметаллов: ковалентные и ван-дер-ваальсовы взаимодействия, мотивы расположения атомов в кристалле (островной, цепочечный, трубчатый, слоистый, каркасный). Аллотропия, полиморфизм и изоморфизм, политипы в неметаллах. Структуры алмаза, лонсдейлита, □□ и □□графита, Si, Ge, □□ и □□Sn, I2, кристаллических инертных газов. Ротационные фазы H2 и □□N2. Мотивы из атомов и расположение молекул в кристаллах фуллерена C60, □□N2, белого и черного фосфора, желтого и серого As, ромбической и моноклинной серы S8, красного и серого селена. Принципы строения нанотрубок углерода, красного фосфора, пластической и волокнистой серы. Относительные значения длин связей и невалентных контактов в простых веществах неметаллов.

5. Структурные типы бинарных и тройных соединений 16 ч.

Бинарные соединения, построенные по принципу плотной упаковки анионов с катионами в пустотах. Ионные кристаллохимические радиусы. Простейшие структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит), NiAs, флюорит и антифлюорит, рутил, двухслойный и четырехслойный политипы CdI2, CdCl2 и Cs2O. «Корундовый» мотив из катионов и упаковка анионов в □□Al2O3 и FeCl3. «Антикорундовый» мотив (AlF3) Строение M3C60 (M = K, Rb, Cs, Tl) и ионного проводника □□AgI. Корреляции свойств бинарных соединений со структурой и соотношением радиусов ионов. Изоморфное замещение катионов в кристаллах, рубин.

Проявления ковалентного связывания в структурах MoS2, Cu2O, PtS. Полиморфные модификации BN, SiO2 (□□кварц, □□тридимит, □□кристобалит, стишовит), H2O (лед Ih и лед Ic). Принципы построения тройных соединений: халькопирита CuFeS2, ильменита FeTiO3, перовскитов ABO3, нормальных и обращенных («инвертированных») шпинелей AB2O4. Строение ReO3 и NaxWO3; переход кубического BaTiO3 в сегнетоэлектрическую фазу.

Характерные лигандные полиэдры в координационных соединениях. Мостиковая функция лигандов, координационные полиэдры с общими вершинами. Структурные мотивы из ковалентно связанных атомов (островной, цепочечный, ленточный, слоистый, каркасный) в бинарных соединениях. Бинарные фазы с полианионами: CaC2, FeS2 пирит, MgB2. Связи металл-металл и кластеры металлов в бинарных производных низших степеней окисления, фрагменты $M6(\square 3-X)8$ и $M6(\square 2-X)12$ (октаэдры M6 с мостиками по граням и ребрам), фазы Шевреля. Клатраты и кристаллогидраты.

6. Основные направления современной кристаллохимии 16 ч.

Соли кислородных кислот. Типы координации анионов и их склонность к агрегации в рядах нитраты – карбонаты – бораты и перхлораты – сульфаты – фосфаты – силикаты. Описание структур КСІО4, К2РtСl6, СаСО3 (кальцит, арагонит) по аналогии с простыми структурными типами. Примеры орто-силикатов и орто-алюминатов: циркон ZrSiO4, гранаты AII3BIII2(SiO4)3 (Ca3Al2(SiO4)3 – гроссуляр, Mg3Al2(SiO4)3 – пироп), Y3Al5Ol2 (YAG). Анионные циклы, цепи, ленты, слои и каркасы из тетраэдрических фрагментов ЭО4 с общими вершинами. Принципы строения цеолитов, «содалитовый фонарь» в Na8[Si6Al6O24]Cl2.

Органическая кристаллохимия. Стандартные длины одинарных и кратных связей С-С. Ковалентные и ван-дер-ваальсовы радиусы основных элементов-органогенов: C, H, O, N, F, Cl, Br. Атом-атомные потенциалы И принцип плотной упаковки молекул в органической кристаллохимии, коэффициент упаковки, молекулярное координационное число. «Уплотняющие» преобладающие пространственные «разрыхляющие» элементы симметрии, молекулярных кристаллов. Пространственные группы оптических изомеров и рацематов. Мотивы расположения молекул в кристаллических структурах метана, адамантана, н-алканов, бензола, нафталина, ферроцена. Твердые растворы замещения и внедрения; полиморфизм органических соединений. Паркетный мотив и стопки в расположении уплощенных молекул; комплексы с переносом заряда и ион-радикальные соли. Типы Н-связей: интервалы энергии, расстояний Х••• У, углов X-H•••Y (X, Y = O, N, S, F). Влияние водородных связей на структуру и свойства кристаллов, мотивы Н-связанных молекул. Соли карбоновых кислот, гидрофобное взаимодействие. Органические ротационные фазы и жидкие кристаллы.

Строение координационных и металлоорганических соединений. Плотная упаковка лигандов в координационной сфере атома металла. Псевдовращение Берри. Толмановский угол как характеристика стерических свойств лиганда. Понятие о молекулярных кристаллах с особыми свойствами (проводниках, магнетиках, сегнетоэлектриках). Пайерлсовский переход в кристаллах. Принципы строения полимеров и биополимеров. Кристаллические полиэтилен и полиацетилен. Конформации макромолекул: спираль и статистический клубок. Общие принципы строения белковых макромолекул (соединение пептидных остатков и их конформационные параметры; первичная, вторичная и третичная структура). Геометрические характеристики конформаций Попрали и Попрали и Попратиста. Фибриллярные, мембранные и глобулярные белки. Плотная упаковка элементов вторичной структуры на «поверхности» белковой глобулы. Понятие о РСА белков на синхротронном излучении.

6. Фонд оценочных средств (ФОС, оценочные и методические материалы) для оценивания результатов обучения по дисциплине (модулю).

6.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости, критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

Раздел 1, КР-1: точечные группы симметрии конечных фигур и молекул.

Операции и элементы симметрии. Взаимодействие закрытых элементов симметрии. Собственные и несобственные вращения.

Точечные группы в обозначениях Шенфлиса. Группы низшей категории симметрии. Семейства групп средней категории симметрии. Группы высшей категории симметрии, их порядки. Симметрия правильных многогранников (платоновых тел). Предельные точечные группы.

Точечные группы в обозначениях Германа-Могена. Связь порядков инверсионных осей с порядками зеркально-поворотных осей системы Шенфлиса. Перевод символов точечных групп из одной системы в другую. Орбита точечной группы, кратность орбиты и локальная симметрия ее

Раздел 2, КР-2: группы симметрии кристаллов.

Элементарная ячейка кристалла, параметры ячейки. Обозначения примитивных и центрированных кристаллических решеток. Индексы направлений и плоскостей в кристалле. Закрытые кристаллографические элементы симметрии. Сингонии, решетки Браве и кристаллографические классы

Открытые элементы симметрии, их обозначения и действие. Взаимодействие элементов симметрии порядка 2 с перпендикулярными и наклонными трансляциями. Особенности взаимодействия с участием осей порядка выше 2. Взаимодействие кристаллографических (закрытых и открытых) элементов симметрии.

Пространственные группы, связь с решетками Браве и кристаллографическими классами. Системы эквивалентных позиций (орбиты) пространственных групп, кратность орбиты. Частные и общие положения в кристалле. Интернациональные Таблицы. Построение простейших графиков пространственных групп и их орбит.

Раздел 3, ДЗ: рентгенофазовый анализ.

Принцип работы и спектр рентгеновской трубки. Формула Брегга. Блок-схема рентгеновского дифрактометра. Формула Шерера. Индицирование дифрактограммы кубического кристалла. Межплоскостные расстояния, относительные интенсивности и индексы рефлексов в рентгенофазовом анализе. Корундовое число. Банк порошковых данных ICDD.

Раздел 3, ДЗ: колебательная спектроскопия.

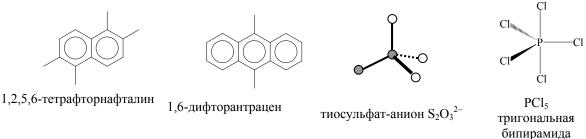
Решение прямой спектральной задачи для нелинейной молекулы XY2, решение задачи о возмущающем влиянии координационной связи на спектр лиганда в комплексе М–ХY,

нахождение правил отбора для трех молекулярных систем и трех систем с трансляционными элементами симметрии

Разделы 4 и 5, КР-3: основные структурные типы.

Строение металлов, плотные и плотнейшие шаровые упаковки, размеры пустот. Металлические радиусы. Структурные типы Си, Мg, α-Fe, α-Po. Многослойные упаковки. Искажения идеальных упаковок в структурах Zn, Cd, In, Hg. Твердые растворы замещения, фазовый переход с упорядочением (Си₃Au).

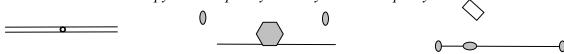
Структуры алмаза, лонсдейлита, гексагонального графита, α– и β–Sn. Политипы графита. Мотивы расположения молекул в α - N_2 , β - N_2 , H_2 , структурном типе Cl_2 (I_2), полиморфах фуллерена C_{60} . Бесконечные мотивы в структурах черного фосфора, α -As (Sb, Bi), α -Se (Te). Соотношение длин связей и несвязывающих контактов в кристаллах простых веществ при движении сверху вниз по подгруппе в Периодической системе.


Плотная упаковка анионов с катионами в пустотах в бинарных соединениях. Ионные радиусы. Структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит), NiAs, CaF₂. Строение TiO₂ (рутил), C₆₀M₃, α — \Box Al_2O_3 (корундовый мотив заполнения октаэдрических пустот), AlF_3 (антикорундовый мотив). Слоистые структуры LiOH и PbO (анти-LiOH), политипов CdI₂, Cs₂O (анти-CdCl₂), MoS₂ и NbS₂, FeCl₃.

бинарных соединений с ковалентным связыванием: BN (кубический Структуры гексагональный), Cu₂O, PtS, MgB₂. Принципы строения HgS (киноварь, метациннабарит), BeCl₂, PdCl₂, FeS₂, CaC₂, Структурные типы перовскита ABO₃ (ReO₃) и шпинели AB₂O₄.

Варианты контрольных работ

К разделу 1


1. Определите точечную группу (международный символ, символ Шёнфлиса) и категорию (низшая, средняя, высшая) для следующих молекул:

2. Выпишите обозначения указанных ниже групп в другой системе C_{4h}

3m 6m2 $m \overline{3}$ S_4 C_{4v} D_5 D_{5h} m 5m

3. Дорисуйте недостающие элементы симметрии в приведенных ниже графиках точечных групп. Выпишите символы этих групп по Герману-Могену и по Шёнфлису

4. Изобразите расположение элементов симметрии точечной группы 42m; покажите на графике все орбиты этой группы, выпишите кратность каждой орбиты.

К разделу 2

- 1. Изобразите на проекции систему эквивалентных точек
- (a) для оси 4_2 , проходящей перпендикулярно (б) для плоскости **п**, совпадающей плоскости рисунка. с плоскостью рисунка
- 2. Изобразите на рисунке расположение элементов симметрии, возникающих в результате взаимодействия

- (a) плоскости **m** и перпендикулярной, к ней оси **2**₁
- (6) оси $\overline{3}$ и перпендикулярной к ней трансляции T
- <u>3.</u> Для приведенных ниже пространственных групп определите центрирование решетки (укажите термин), сингонию, кристаллографический класс и кратность общей позиции (т.е. позиции с локальной симметрией 1) в элементарной ячейке.

Символ группы: тип решетки

P6/mcc

 $I2_13$

 $I4_1/amd$

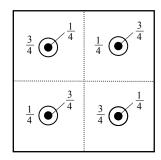
 $Cmc2_1$

Cccm

C2/c

тип решетн сингония:

крист. класс:


кратность позиции 1:

<u>4.</u> Нарисуйте график пространственной группы **P6**, нанесите на него все (различные) правильные системы точек и укажите их кратность.

К разделам 4, 5

- 1. В приведенном списке подчеркните вещества, образующие гексагональные кристаллы: Cu, Mg, белое олово, лонсдейлит, CdI₂, Li₂O, I₂, H₂, CsCl, Cu₃Au, вюрцит, NiAs, α –N₂, NbS₂, He, Ge, серый мышьяк, Zn, α –Po, ромбическая сера, TiO₂ анатаз, α –Fe, Hg.
- 2. В тернарном соединении $A_m B_n X_p$ катионы A и анионы X расположены по мотиву флюорита, а катионы B занимают оставшиеся пустоты в этом мотиве. Определите состав соединения и геометрию координационного окружения катионов B анионами X.
- 3. По данной проекции элементарной ячейки определите структурный тип соединения. Изобразите проекцию элементарной ячейки в общепринятом для данного структурного типа виде. Приведите примеры веществ, относящихся к этому типу.

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

- 4. Расположение атомов в кристаллах титаната стронция соответствует структурному типу перовскита. Параметр элементарной ячейки a = 3.9 А. Оцените анионный радиус кислорода. Ответ поясните с помощью проекции элементарной ячейки.
- 5. По сингонии и координатам атомов изобразите проекцию элементарной ячейки кристалла. Определите состав и структурный тип соединения, мотив кристаллической структуры, число формульных единиц в ячейке и координацию атомов (координационные полиэдры и координационные числа).

Гексагональная сингония, $\gamma = 120^{0}$

атом x/a y/b z/c

M(1) 2/3 1/3 1/4
M(2) 2/3 1/3 3/4
X(1) 1/3 2/3 1/2
X(2) 1 1 1

- 6.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации по дисциплине (модулю), критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)
- 1. Операции и элементы симметрии. Закрытые элементы симметрии и их орбиты, взаимодействие элементов симметрии. Матрицы преобразований симметрии в двумерном и трехмерном пространстве. Собственные и несобственные вращения, хиральные фигуры.
- 2. Точечные группы операций симметрии в обозначениях Шенфлиса. Группы низшей категории симметрии. Семейства групп средней категории симметрии, порядки этих групп при порядке главной оси п. Стереографическая проекция. Группы высшей категории симметрии, их порядки и составляющие элементы. Симметрия правильных многогранников (платоновых тел). Формула Эйлера. Предельные точечные группы бесконечного порядка.
- 3. Точечные группы в обозначениях Германа-Могена. Инверсионные оси и их связь с зеркально-поворотными осями системы Шенфлиса. Перевод символов инверсионных осей и точечных групп из одной системы в другую. Орбита точечной группы, кратность орбиты и локальная симметрия ее точек. Понятие о простых формах. Симметрически независимая область фигуры.
- 4. Трансляционная симметрия и кристаллическая решетка. Элементарная ячейка кристалла, различные способы ее выбора (параллелепипед повторяемости, полиэдр Вороного-Дирихле); параметры ячейки. Обозначения примитивных и центрированных решеток. Фракционные координаты точек, индексы направлений и плоскостей в кристалле произвольной сингонии. Симметрически связанные направления и формы. Матрица Грама. Кристаллографические элементы симметрии в 2D- и 3D-случаях. Сингонии, решетки Браве и кристаллографические точечные группы в двумерном и трехмерном случаях; классы Лауэ. Связь кристаллографического класса со свойствами на примере полярных и хиральных кристаллов.
- 5. Открытые элементы симметрии, их происхождение, обозначения и действие. Плоскости скользящего отражения, энантиоморфные и неэнантиоморфные винтовые оси. Взаимодействие элементов симметрии порядка 2 с перпендикулярными и наклонными трансляциями. Особенности взаимодействия с участием осей порядка выше 2. Взаимодействие кристаллографических (закрытых и открытых) элементов симметрии.
- 6. Пространственные группы, их связь с решетками Браве и кристаллографическими классами. Симморфные и несимморфные группы, пары энантиоморфных групп. Системы эквивалентных позиций (орбиты) пространственных групп, кратность орбиты. Частные и общие положения в кристалле. Подгруппы пространственных групп. Информация о пространственных группах, содержащаяся в т. 1 Интернациональных Таблиц.
- 7. Построение графиков групп триклинной, моноклинной и орторомбической сингоний. Особенности центрировки (А- и С-) в классе mm2. Стандартная и нестандартные установки. Выбор начала координат в пространственной группе. Принципы построения символов и графики отдельных групп тригональной, тетрагональной и гексагональной сингоний. Диагональные и апофемальные элементы симметрии. Кубизация групп орторомбической и тетрагональной сингоний.
- 8. Принцип работы и спектр рентгеновской трубки. Тормозное излучение и характеристические линии. Синхротронное излучение, выработка рентгеновского СИ в ускорителе электронов (накопительном кольце). Дифракция рентгеновского излучения на кристалле. Формула Брегга, кристаллы-монохроматоры. Блок-схема рентгеновского дифрактометра. Мозаичное строение реального кристалла, зависимость полуширины рефлекса от размера области когерентного рассеяния, формула Шерера.
- 9. Межплоскостные расстояния и индексы рефлексов, понятие об обратной решетке. Связь индексов hkl с межплоскостными расстояниями, индицирование дифрактограмм. Использование порошковых дифрактограмм в рентгенофазовом анализе. Относительные интенсивности рефлексов, корундовое число. Банк порошковых данных ICDD. Закон Фриделя и систематические погасания рефлексов.
- 10. Атомный фактор рассеяния. Интегральные интенсивности рефлексов и комплексные структурные амплитуды F_{hkl} . Понятие о проблеме фаз и методах расшифровки кристаллических структур. Основные этапы рентгеноструктурного анализа монокристаллов (PCA). Отношение

числа наблюдаемых рефлексов к числу варьируемых параметров, изотропное и анизотропное приближения, R-фактор. Представление данных PCA в химических статьях. Банки структурных данных (ICSD, CSD): поиск и обработка содержащейся в них структурной информации.

- 11. Основы колебательной спектроскопии, проблемы динамики неорганических систем, характеризующихся большими амплитудами колебаний и существенным ангармонизмом, и использование теории возмущений при их теоретическом (базирующемся на квантовомеханических расчетах силовых полей) и полуэмпирическом анализе
- 12. Задача о взаимодействии излучения с веществом в рамках математического аппарата теории представлений точечных и пространственных групп, проблемы интерпретации спектров твердых тел, связанные с необходимостью учета макроскопических эффектов, искажающих оптические свойства кристаллов.
- 13. Типы межатомных взаимодействий (металлическое, кулоновское, ковалентное, ионное). Строение металлов, плотные и плотнейшие шаровые упаковки, размеры пустот. Металлические радиусы. Маккеевская икосаэдрическая упаковка мягких сфер. Структурные типы Cu, Mg, α –Fe, α –Po. Многослойные упаковки, последовательность плотнейших слоев в металлах. Искажения идеальных упаковок в структурах Zn, Cd, In, Hg. Твердые растворы замещения Cu–Au, фазовый переход с упорядочением. Структура интерметаллидов Cu₃Au, CuAu и Nb₃Sn (« β –W»). Фазы Юм-Розери и Лавеса. Твердые растворы внедрения в структурах карбидов, нитридов и гидридов металлов, карбиды вольфрама. Правило Хейга.
- 14. Ковалентные связи и невалентные взаимодействия в структурах неметаллов. Структуры алмаза, лонсдейлита, гексагонального графита, кристаллических Cl_2 (I_2), кристаллических инертных газов. Принципы строения ромбоэдрического графита, кристаллических α N_2 , β – N_2 , H_2 . Слоистые соединения внедрения графита. Мотивы из атомов и молекул в неметаллах подгруппы бора, углерода, фосфора и серы. Соотношение длин связей и несвязывающих контактов в кристаллах простых веществ при движении сверху вниз по подгруппе в Периодической системе.
- 15. Бинарные соединения, построенные по принципу плотной упаковки анионов с катионами в пустотах. Структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит), NiAs, CaF₂, TiO₂ (рутил): упаковки атомов и заполнение пустот в них, примеры соединений. Строение $C_{60}M_3$, $C_{60}M_6$ (M металл) и Na₃As. Корундовый мотив заполнения октаэдрических пустот в α – \square Al₂O₃, антикорундовый мотив заполнения пустот (AlF₃). Твердые растворы замещения, рубин. Слоистые структуры LiOH и PbO (анти-LiOH), политипов CdI₂, Cs₂O (анти-CdCl₂), MoS₂ и NbS₂, галогенидов и гидроксидов MX₃. Ионные радиусы.
- 16. Структуры бинарных соединений с ковалентным связыванием. Структуры BN (кубический и гексагональный), Cu_2O , PtS, MgB_2 . Принципы строения HgS (киноварь, метациннабарит), $BeCl_2$, $PdCl_2$, FeS_2 (пирит, марказит), CaC_2 , $CaSi_2$, LaB_6 . Фазы Цинтля. Мостиковая координация μ_n -галогенидных и μ_n -халькогенидных лигандов. Кластерные фрагменты $M_4(\mu_3-X)_4$, $M_6(\mu_3-X)_8$ и $M_6(\mu_2-X)_{12}$ в низших галогенидах и халькогенидах переходных металлов, фазы Шевреля. Принципы строения полиморфных модификаций SiO_2 (кварц, β -тридимит, β -кристобалит, стишовит) и ионного проводника α -AgI.
- 17. Сверхструктурное упорядочение в «бинарных» структурных типах (ильменит $FeTiO_3$, халькопирит $CuFeS_2$). Структурные типы перовскита ABO_3 и ReO_3 , структура Na_xWO_3 . Принципы строения нормальных и обращенных шпинелей, примеры соединений. Нестехиометрические шпинели (тип γ – Al_2O_3).
- 18. Координационные полиэдры, отвечающие к.ч. 3-10, их симметрия. Принципы строения молекулярных оксидов и галогенидов, тип SnI_4 . Строение CH_4 , NH_3 , HCl. Геометрические характеристики водородных связей (сильных, средних и слабых). Принципы строения льда Ih и Ic и водных клатратов.
- 19. Мотивы бинарных соединений в структурах безводных солей. Принципы строения $KClO_4$, K_2PtCl_6 , $CaCO_3$ (кальцит, арагонит), $CaWO_4$ ($ZrSiO_4$). Упаковка анионов и координация атомов металла в оливине ($Fe,Mg)_2SiO_4$. Принципы строения гранатов $A^{II}_3B^{III}_2(SiO_4)_3$ и $Y_3Al_5O_{12}$ (YAG). Координация анионов и свойства солей в рядах нитраты—карбонаты—бораты, перхлораты—

сульфаты—фосфаты. Неорганические сегнетоэлектрики (KH_2PO_4) , перовскиты) антисегнетоэлектрики $(NH_4H_2PO_4)$.

И

20. Островные, цепочечные, ленточные, слоистые и каркасные мотивы из конденсированных тетраэдров в структурах силикатов и алюмосиликатов. Структурные мотивы в тортвейтите $Sc_2Si_2O_7$, берилле $Be_3Al_2(Si_6O_{12})$ и изумруде. Сетка кагоме. Пироксеновые цепочки $[Si_2O_6^{4^-}]_{\infty}$, амфиболовые ленты $[Si_4O_{11}^{4^-}]_{\infty}$, бесконечные слои $[Si_2O_5^{2^-}]_{\infty}$, содалитовый фонарь $[Si_{12}Al_{12}O_{48}]^{12^-}$ в содалите $Na_8[Si_6Al_6O_{24}]Cl_2$, гидросодалите $Na_8[Si_6Al_6O_{24}](OH)_2$, ультрамарине $(Na_*Ca)_8[Si_6Al_6O_{24}](SO_4^{2^-},S^{2^-},Cl^-)$. Принципы строения талька, глин и слюд, цеолитов. Островные и цепочечные мотивы в структурах боратов. Конденсированные октаэдры в островных изополи- и гетерополианионах, структура Кеггина $M_{12}X^{n^+}O_{40}^{(8-n)^-}$ (где $M=M_0$, $W; X^{n^+}=Si^{IV}$, Ge^{IV} , P^V , As^V).

- 21. Молекулярные кристаллы органических соединений. Стандартные длины одинарных и кратных связей С–С. Ковалентные и ван-дер-ваальсовы радиусы основных элементов-органогенов: С, H, O, N, F, Cl, Br. Атом-атомные потенциалы и принцип плотной упаковки молекул. Коэффициент заполнения k и молекулярное координационное число (МКЧ). Строение кристаллов из квазисферических (метан, адамантан), длинноцепочечных (н-алканы) и уплощенных молекул (бензол, нафталин). Стопки и паркетные слои молекул в кристаллах.
- 22. Характерные элементы симметрии и преобладающие пространственные группы для органических соединений. Структурные классы. Полиморфизм и твердые растворы органических соединений. Пространственные группы кристаллов из хиральных молекул и рацематов. Понятие о ротационных и жидкокристаллических фазах.
- 23. Комплексы с переносом заряда и ион-радикальные соли. Особенности кристаллических структур с H-связями: k, МКЧ, $T_{\text{пл}}$ и $T_{\text{кип}}$; островные, цепочечные и слоистые мотивы. Соли карбоновых кислот, гидрофобное взаимодействие.
- 24. Строение координационных и металлоорганических соединений. Плотная упаковка лигандов в координационной сфере атома металла. Псевдовращение Берри (PF₅). Кристаллические структуры $PCl_5=PCl_4^+PCl_6^-$ и $PBr_5=PBr_4^+Br_-^-$. Толмановский угол как характеристика стерических свойств лиганда. Понятие о молекулярных кристаллах с особыми свойствами (проводниках, магнетиках, сегнетоэлектриках). Пайерлсовский переход в кристаллах.
- 25. Принципы строения полимеров и биополимеров. Кристаллические полиэтилен и полиацетилен. Конформационная карта элементарного звена, спираль и статистический клубок. Полисахариды, степень кристалличности, дендримеры. Общие принципы строения белковых макромолекул (соединение пептидных остатков и их конформационные параметры; первичная, вторичная и третичная структура). Конформации α-спирали и β-листа. Фибриллярные, мембранные и глобулярные белки. Плотная упаковка элементов вторичной структуры на «поверхности» белковой глобулы. Понятие о РСА белков на синхротронном излучении.
- 7. Ресурсное обеспечение:
- 7.1. Перечень основной и дополнительной литературы Основная литература:
- 1. П.М.Зоркий, Симметрия молекул и кристаллических структур, МГУ, 1986.
- 2. П.М.Зоркий, Н.Н.Афонина, Симметрия молекул и кристаллов, МГУ, 1979.
- 3. Т.В.Богдан, Основы рентгеновской дифрактометрии. Учебно-методическое пособие к общему курсу кристаллохимии. М.: Химфак МГУ, 2012.
- 4. Г.Б.Бокий, Кристаллохимия, 3-е изд. М.: Наука, 1971.
- 5. А.Вест, Химия твердого тела, М., Мир, 1988; т.1.
- 6. Г.Кребс, Основы кристаллохимии неорганических соединений, М., Мир, 1971.
- 7. К. Накамото. ИК спектры и спектры КР неорганических и координационных соединений. М., Мир, 1991.
- 7.2. Перечень лицензионного программного обеспечения, в том числе отечественного производства (подлежит обновлению при необходимости)

База структурных данных ICSD

- 7.3. Описание материально-технического обеспечения. аудитория с доской, компьютерный проектор, компьютерный класс
- 8. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.
- 9. Разработчик (разработчики) программы. д.х.н., проф. Ю.Л. Словохотов