Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет наук о материалах

УТВЕРЖДАЮ
Зам. декана ФНМ по учебной
работе
/А.В. Кнотько /
«»2016 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Наименование дисциплины:
Физика сверхпроводимости
Уровень высшего образования:
бакалавриат
Направление подготовки:
04.03.02 Химия, физика и механика материалов
Направленность (профиль)/специализация ОПОП:
общий
Форма обучения:
кыны
Рабочая программа рассмотрена и одобрена
Методической комиссией факультета наук о материалах
(протокол №, дата)

- **1.** Место дисциплины в структуре ОПОП ВО: вариативная часть, профессиональная подготовка, общепрофессиональные спецкурсы по выбору, курс предназначен для студентов факультета наук о материалах **4-го года обучения (7-й семестр),** курс является обязательным по выбору
- 2. Входные требования для освоения дисциплины, предварительные условия (если есть):

Математический анализ

Обыкновенные дифференциальные уравнения

Общая физика

Введение в физику твердого тела и физика полупроводников

3. Результаты обучения по дисциплине:

Знать: основные представления о сверхпроводящем состоянии вещества (куперовские пары, энергетическая щель, фононный и другие механизмы сверхпроводимости), его свойства (сверхпроводники І-го и ІІ-го рода, вихри Абрикосова; квантование магнитного потока, туннелирование в сверхпроводниках), а также эксперименты, подтверждающие эти представления для классических и высокотемпературных сверхпроводников;

Уметь: использовать графики температурных зависимостей критических температуры и магнитного поля, длины когерентности, глубины проникновения магнитного поля и других параметров для интерпретации экспериментальных данных по сверхпроводимости, уметь проводить оценки критических параметров сверхпроводников на основе модели Бардина-Купера-Шриффера;

- 4. Объем дисциплины составляет 2 з.е. (72 ак.ч.)
- 5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий:
- 5.1. Структура дисциплины по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий (в строгом соответствии с учебным планом)

	Семест	р
Вид работы		Всего
	7	
Общая трудоёмкость, акад. Часов	72	72
Аудиторная работа:	36	36
Лекции, акад. Часов	36	36
Семинары, акад. Часов		
Лабораторные работы, акад. часов		
Самостоятельная работа, акад. часов	36	36
Вид итогового контроля (зачёт, экзамен)	Зач.	

5.2. Содержание разделов (тем) дисциплины

1. ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ

(лекции — 6 час)

Историческая справка. Открытие сверхпроводимости. Основные этапы развития исследований.

Критическая температура. Критическое магнитное поле. Критический ток. Эффект Мейсснера. Глубина проникновения магнитного поля в сверхпроводник. Сверхпроводники 1-го и

2-го рода. Первое, второе и третье критические поля. Вихри Абрикосова. Определение критических параметров сверхпроводников. Значения критических параметров для различных классов сверхпроводников.

Свободная энергия Гиббса у сверхпроводника. Критическое поле и энергия корреляции. Энтропия. Электронная теплоёмкость.

2. СВОЙСТВА СВЕРХПРОВОДНИКОВ

(лекции — 8 часов)

Нулевое сопротивление. Сверхпроводящее кольцо в магнитном поле. Распределение тока в сверхпроводящей цепи. Сопротивление переменному току. Внутренняя индуктивность сверхпроводящих электронов.

Магнитные свойства. Физический смысл векторов **В** и **Н.** Уравнения Максвелла для вектора **В**. Размагничивающий фактор. Связь поля на поверхности и тока. Промежуточное состояние и разрушение сверхпроводимости магнитным полем. Промежуточное состояние при разрушении сверхпроводимости током.

Кристаллическая решётка и изменение упругих модулей при сверхпроводящем переходе. Закон соответственных состояний. ТермоЭДС в односвязных сверхпроводниках. Оптическое поглощение. Поглощение ультразвука. Теплопроводность. Туннельные зффекты. Стационарный и нестационарный эффекты Джозефсона. Релаксация ядерного спина. Квантование магнитного потока. Кинетический и канонический импульсы. Флюксоид. Квант потока. Изотопический эффект. Влияние давления.

3. МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ СВЕРХПРОВОДИМОСТИ БАРДИНА-КУПЕРА-ШРИФФЕРА

(лекции — 8 часов)

Модель Бардина-Купера-Шриффера (БКШ). Электрон-фононное взаимодействие. Природа сил притяжения между электронами. Куперовские пары. Диаграмма Купера. Основное состояние сверхпроводника. Уравнение для энергии. Расщепление парных состоянии в пространстве импульсов. Энергия связи пары. Элементарные возбуждения. Закон дисперсии. Энергетическая щель. Плотность состояний элементарных возбуждений. Длина когерентности. Грязные и чистые сверхпроводники. Зависимость щели от температуры. Формула БКШ для критической температуры.

Сверхпроводники с сильной связью. Формулы Мак-Миллана.

Нефононные механизмы сверхпроводимости. Возможности повышения критической температуры. Высокотемпературная сверхпроводимость (ВТСП). Кристаллическая структура, критические параметры и характерные свойства ВТСП соединений: оксидных купратов, диборида магния, железосодержащих сверхпроводников, органических сверхпроводников - фуллеридов.

4. ТЕОРИЯ ГИНЗБУРГА-ЛАНДАУ

(лекции — 8 часов)

Однородный сверхпроводник без магнитного поля. Неоднородный сверхпроводник в магнитном поле. Уравнение для свободной энергии Гиббса. Метод вывода первого и второго уравнений Гинзбурга-Ландау. Уравнение для безразмерной волновой функции. Длина когерентности. Эффект близости. Энергия границы между нормальной и сверхпроводящей фазой. Сверхпроводники 1-го и 2-го рода. Тонкие плёнки. Критическое магнитное поле тонких плёнок. Изменение концентрации сверхпроводящих электронов при изменении их скорости. Критический ток плёнок.

Сверхпроводники 2-го рода. Вихревая решётка. Энергия одиночного вихря. Взаимодействие вихрей. Вихрь, обтекаемый током. Сила Лоренца. Первое, второе и третье критические поля. Барьер Бина-Ливингстона. Критический ток. Однородный сверхпроводник. Неоднородный сверхпроводник. Силы пиннинга. Механизм протекания сверхпроводящего тока. Пик-эффект. Резистивное состояние.

5. ЭЛЕКТРОДИНАМИКА СВЕРХПРОВОДНИКОВ И ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СВЕРХПРОВОДИМОСТИ

(лекции — 6 часа)

Линейная электродинамика. Уравнения Лондонов. Лондоновская глубина проникновения магнитного поля в сверхпроводник. Физическая природа эффекта Мейсснера. Нелинейная электродинамика Пиппарда. Локальный эквивалент нелокального уравнения Пиппарда. Пиппардовская глубина проникновения.

Магнетизм и сверхпроводимость. Возвратная сверхпроводимость. Кривые критических полей. Сверхпроводимость тяжёлых фермионов. Плотность состояний. Резонанс Абрикосова-Сула. Сверхпроводящие Кондо-решётки.

Сильноточная энергетика. Термоядерные реакторы. Сверхпроводящие линии передач, накопители энергии. Транспорт. Приборостроение. Квантовые интерферометры, сверхпроводящие вольтметры, балометры, СКВИДЫ. Микроэлектроника, ЭВМ. Левитация, сверхпроводящие гироскопы, сверхпроводящие подвесы.

- 6. Фонд оценочных средств (ФОС, оценочные и методические материалы) для оценивания результатов обучения по дисциплине (модулю).
- 6.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости, критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

Список контрольных вопросов

- 1. Построить график зависимости глубины проникновения магнитного поля в сверхпроводник от температуры.
- 2. Физическая природа эффекта Мейсснера-Оксенфельда.
- 3. Термодинамика сверхпроводников в магнитном поле.
- 4. Вычислить разность энтропий нормальной и сверхпроводящей фаз в равновесном состоянии в магнитном поле.
- 5. Вычислить скачок электронной теплоемкости при сверхпроводящем переходе.
- 6. Затухание ультразвука в сверхпроводнике.
- 7. Туннельные эффекты.
- 8. Вычислить амплитуду тока Джозефсона при контакте двух одинаковых сверхпроводни-ков через диэлектрик.
- 9. Квантование магнитного потока в сверхпроводнике.
- 10. Фононный механизм сверхпроводимости.
- 11. Построить диаграмму Купера для импульсов электронов, объединенных в пару, и объяснить ее физический смысл.
- 12. Записать энергию основного состояния сверхпроводящей фазы при Т=0 в теории БКШ.
- 13. Построить график зависимости энергии от импульса для элементарных возбуждений в нормальной и сверхпроводящей фазах при T=0.
- 14. Высокотемпературная сверхпроводимость и возможные нефононные механизмы сверхпроводимости.
- 15. Изотопический эффект в классических и высокотемпературных сверхпроводниках.
- 16. Различие энергетических щелей сверхпроводника и полупроводника.
- 17. Получить граничные условия к уравнению Гинзбурга-Ландау.
- 18. Сравнение свойств сверхпроводников І-го и ІІ-го рода.
- 19. Оценить длину когерентности для сверхпроводников второго рода, используя величину энергетической щели.
- 20. Устройство и работа СКВИДа.

6.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации по дисциплине (модулю), критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

- 1. Критическая температура. Способ определения.
- 2. Критическое магнитное поле.
- 3. Эффект Мейсснера-Оксенфельда.
- 4. Сверхпроводники І-го и ІІ-го рода.
- 5. Критический ток. Глубина проникновения магнитного поля в сверхпроводник.
- 6. Нулевое сопротивление. Сверхпроводящий контур в магнитном поле.
- 7. Распределение тока в сверхпроводящей цепи.
- 8. Сопротивление переменному току.
- 9. Термоэлектрические явления в сверхпроводниках.
- 10. Размагничивающий фактор.
- 11. Промежуточное состояние в магнитном поле.
- 12. Энергетическая щель в спектре сверхпроводника.
- 13. Поглощение ультразвука.
- 14. Термодинамика сверхпроводников. Свободная энергия сверхпроводника.
- 15. Электронная теплоемкость.
- 16. Туннельные эффекты.
- 17. Фазовая когерентность электронной подсистемы в сверхпроводниках.
- 18. Квантование магнитного потока.
- 19. Эффекты Джозефсона. Стационарный эффект.
- 20. Эффекты Джозефсона. Нестационарный эффект.
- 21. Изотопический эффект.
- 22. Основные положения микроскопической теории Бардина-Купера-Шриффера.
- 23. Электрон-фононное взаимодействие.
- 24. Куперовские пары.
- 25. Плотность состояний элементарных возбуждений.
- 26. Зависимость энергии связи пары от температуры. Критическая температура сверхпроводника в теории БКШ.
- 27. Высокотемпературная сверхпроводимость (ВТСП).
- 28. Структура и свойства характерных ВТСП соединений.
- 29. ВТСП соединение МgВ₂.
- 30. Железосодержащие сверхпроводники.
- 31. Теория сверхпроводимости Гинзбурга-Ландау. Основные положения.
- 32. Уравнения Гинзбурга Ландау. Градиентная инвариантность.
- 33. Длина когерентности. Параметр Гинзбурга-Ландау.
- 34. Энергия границы раздела между нормальной и сверхпроводящей фазами.
- 35. Сверхпроводники ІІ-го рода. Вихри Абрикосова.

7. Ресурсное обеспечение:

7.1. Перечень основной и дополнительной литературы

Основная литература:

- 1. В.В. Шмидт. Введение в физику сверхпроводимости. МНЦМР, Москва, 2000.
- 2. М.И. Каганов, В.В. Ржевский. Введение в квантовую теорию твердого тела. Москва, МГУ, 1987.

Дополнительная литература

- 1. П. Де Жен. Сверхпроводимость металлов и сплавов. Москва, Мир, 1968.
- 2. Н.М. Плакида. Высокотемпературная сверхпроводимость. Москва, Наука, 1996.
- 3. Э. Линтон. Сверхпроводимость. Москва, Мир, 1971.

4. В. Буккель. Сверхпроводимость. Москва, Мир, 1975.

Методические указания

- 1. В.В. Ржевский. Теория сверхпроводимости Гинзбурга-Ландау. Уч.-метод. разработка. Ч.1-2, Москва, Физ. ф-т МГУ, 2010.
- 2. В.В. Ржевский. Теория сверхпроводимости Бардина-Купера-Шриффера. Уч.-метод. разработка. Ч.1, Москва, Физ. ф-т МГУ, 2012.
- 7.2. Перечень лицензионного программного обеспечения, в том числе отечественного производства (подлежит обновлению при необходимости)

 Не требуется
- 7.3. Описание материально-технического обеспечения. аудитория с доской, компьютерный проектор,
- 8. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.
- 9. Разработчик (разработчики) программы. к.ф.-м.н. В.В. Ржевский