Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова Факультет наук о материалах

УТВЕРЖДАЮ
Зам. декана ФНМ по учебной
работе
/А.В. Кнотько /
«»2016 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Наименование дисциплины:
Низкоразмерные структуры и сверхрешетки
Уровень высшего образования:
бакалавриат
Направление подготовки:
04.03.02 Химия, физика и механика материалов
Направленность (профиль)/специализация ОПОП:
общий
.
Форма обучения:
е по
Рабочая программа рассмотрена и одобрена
Методической комиссией факультета наук о материалах
(протокол №, дата)

1. общепрофессиональные дисциплины по выбору, курс предназначен для студентов факультета наук о материалах **4-го года обучения (8-й семестр),** курс является обязательным по выбору

2. Входные требования для освоения дисциплины, предварительные условия (если есть):

Математический анализ
Высшая алгебра и аналитическая геометрия
Дифференциальные уравнения
Уравнения математической физики
Теория функций комплексной переменой
Общая физика
Квантовая физика
Статистическая физика
Введение в физику твердого тела и физика полупроводников

3. Результаты обучения по дисциплине:

Знать: особенности строения и основные электронные свойства низкоразмерных полупроводниковых структур, сверхрешёток и соединений с пониженной размерностью, основы технологии их получения и основные области применения

Уметь: проводить оценки и расчёты энергий, уровня Ферми, концентрации электронов и дырок в низкоразмерных полупроводниковых структурах, соединениях и сверхрешётках, параметров описывающих основные физические явления и эффекты, использовать полученные знания при выборе методов и анализе результатов экспериментов по изучению структур и соединений с пониженной размерностью и сверхрешёток

- 4. Объем дисциплины составляет 2 з.е. (72 ак.ч.)
- 5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий:
- 5.1. Структура дисциплины по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий (в строгом соответствии с учебным планом)

Вид работы	Семестр		Всего
	8		
Общая трудоёмкость, акад. Часов	72		72
Аудиторная работа:	24		24
Лекции, акад. Часов	24		24
Семинары, акад. Часов			
Лабораторные работы, акад. часов			
Самостоятельная работа, акад. Часов	48		48
Вид итогового контроля (зачёт, экзамен)	Зач.		

5.2. Содержание разделов (тем) дисциплины

1. ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ СВЕРХРЕШЁТОК, ГЕТЕРОСТРУКТУР, ИНВЕРСИОННЫХ СЛОЁВ

(лекции 3 часа)

Молекулярно-лучевая эпитаксия и технология получения полупроводниковых сверхрешеток и гетероструктур.

Однородное, модулированное и дельта-легирование.

Инверсионные слои и аккумуляционные слои в структурах "металл-диэлектрик-полупроводник".

2. СВОЙСТВА ДВУМЕРНЫХ ЭЛЕКТРОНОВ

(лекции 7 часов)

Размерное квантование, энергетический спектр двумерных электронов.

Экранирование, плазмоны.

Целочисленный квантовый эффект Холла и его метрологические приложения.

Многочастичные эффекты, дробный квантовый эффект Холла.

Квантовые поправки к проводимости, слабая локализация двумерных электронов.

3. ПОЛУПРОВОДНИКОВЫЕ СВЕРХРЕШЁТКИ

(лекции 7 часов)

Классификация сверхрешеток. Композиционные одномерные сверхрешетки. Легированные сверхрешетки.

Энергетический спектр сверхрешетки, зависимость электронной плотности состояний от размерности и энергии.

Минизоны. Управление электронным энергетическим спектром на примере сверхрешетки GaAs/GaAlAs.

Особенности электропроводности вдоль слоев и вдоль оси сверхрешетки, туннелирование, отрицательная дифференциальная проводимость.

Квантовые нити и квантовые точки, методы их получения. Физические явления в квантовых нитях и точках.

4. ГРАФИТ И ЕГО ИНТЕРКАЛИРОВАННЫЕ СОЕДИНЕНИЯ, СТРУКТУРА, ЭЛЕКТРОННЫЕ СВОЙСТВА

(лекции 4 часа)

Графит, структура, электронные свойства.

Явление интеркалирования, классификация соединений внедрения в графит: донорные, акцепторные соединения, гетероинтеркалированные типа донор-донор, акцептор-акцептор, акцептор-донор и коинтеркалированные.

Сверхпроводимость и суперметаллическая электропроводность соединений внедрения в графит.

Графен, фуллерен, фуллерит, фуллерид и моно- и многослойные нанотрубки, новые формы углерода, физические свойства графена, фуллеренов и нанотрубок.

Сверхпроводящие свойства фуллеридов.

5. КВАЗИДВУМЕРНЫЕ ПРОВОДНИКИ И ПОЛУПРОВОДНИКИ

(лекции 3 часа)

Квазидвумерные электронные системы на основе дихалькогенидов переходных металлов, структура, электронные свойства.

Сверхпроводимость в дихалькогенидах переходных металлов.

Волны зарядовой плотности, переход Пайерлса.

Аналог квантового эффекта Холла в слоистых полупроводниках.

Синтетические металлы и сверхпроводники на основе допированных квазиодномерных органических соединений.

- 6. Фонд оценочных средств (ФОС, оценочные и методические материалы) для оценивания результатов обучения по дисциплине (модулю).
- 6.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости, критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

Список контрольных вопросов и заданий

- 1. Нарисовать энергетическую диаграмму однородно легированной донорной примесью квантовой ямы $Al_xGa_{1-x}As/GaAs/Al_xGa_{1-x}As$.
- 2. Как устроен энергетический спектр двумерных электронов?
- 3. В двумерной структуре энергия Ферми на 20 мэВ выше минимума единственной двумерной подзоны. При T=0~K подвижность электронов равна $\mu=10~\text{m}^2/(\text{B·c})$. Чему равно удельное сопротивление этой структуры при 0~K?
- 4. При какой концентрации двумерных электронов двумерный радиус экранирования совпадает с фермиевской длиной волны электрона? Эффективная масса электрона равна 0.1 m₀. Двумерная структура расположена внутри однородной среды с диэлектрической проницаемостью 10. T=0 K. Заполнена 1 двумерная подзона.
- 5. Как устроен энергетический спектр двумерных электронов в квантующем магнитном поле?
- 6. Чему равна кратность вырождения уровня Ландау в магнитном поле с индукцией 5 Тл.
- 7. В двумерной структуре с одной заполненной подзоной наблюдаются осцилляции магнетосопротивления. Одим из минимумов сопротивления наблюдается в магнитном поле 2 Тл, другой минимум в магнитном поле 2.5 Тл. Считая что спиновое расщепления уровней Ландау пренебрежимо мало, определить концентрацию двумерных электронов. Т=0 К.
- 8. Что такое молекулярно-лучевая эпитаксия?
- 9. В установке молекулярно-лучевой эпитаксии выращивается структура со скоростью 1 нм/с. Какое остаточное давление кислорода допустимо, если содержание кислорода в слое не должно превышать 10^{13} см⁻³. Рост происходит при $500\,^{0}$ С. Считать, что каждая молекула кислорода попадающая на поверхность остаётся в выращиваемом слое?
- 10. В двумерной структуре с одной заполненной подзоной длина волны электронов с энергией равной энергии Ферми равна 2 нм. Где расположен уровень Ферми относительно дна подзоны при температуре 0 К, если эффективная масса электрона равна 0.05 m₀?
- 11. В зависимости сопротивления от 1/B наблюдаются осцилляции с периодом $0.1~\mathrm{Tr}^{-1}$. В каком магнитном поле фактор заполнения v_B равен 1. Чему равно эффективное магнитное поле для композитных фермионов состоящих из электрона и двух вихрей, если реальное магнитное поле равно 15 Tr ?
- 12. Какова электронная структура графита и графена?
- 13. Концентрацию электронов в графене изменяют с помощью полевого электрода. При какой концентрации электронов уровень Ферми в графене при 0 K расположен на 30 мэВ? Закон дисперсии считать линейным, v_0 = 10^6 м/с.
- 14. Какие типы композитных сверхрешёток Вы знаете?
- 15. Нарисовать энергетическую диаграмму политипной сверхрешетки.
- 16. Энергия Ферми в одномерной структуре (квантовой нити) расположена на 15 мэВ выше минимума нулевой одномерной подзоны E_0 и на 5 мэВ выше минимума 2-ой одномерной подзоны E_1 . Чему равна концентрация одномерных электронов в такой структуре при T=0 K? Эффективная масса электронов равна 1/10 массы свободного электрона.
- 17. При какой концентрации электронов в графене, помещенном в магнитное поле с индукцией 2 Тл, перпендикулярном графитовому слою будут полностью заполнены 0-ой и 1-ый уровни Ландау? Постоянная υ_0 в законе дисперсии графена равна $2\cdot 10^6$ м/с?
- 18. При какой температуре концентрация электронов (и дырок) в собственном графене равна 10^{10} см⁻²? Закон дисперсии считать линейным, v_0 = 10^6 м/с.

6.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации по дисциплине (модулю), критерии и шкалы оценивания (в отсутствие утвержденных соответствующих локальных нормативных актов на факультете)

Вопросы зачета:

- 1. Основные принципы метода молекулярно-лучевой эпитаксии (МЛЭ).
- 2. Требования к вакууму и температуре подложки в методе МЛЭ.
- 3. Типы двумерных структур.
- 4. Разновидности легирования двумерных структур.
- 5. Энергетический спектр двумерных электронов в нулевом магнитном поле.
- 6. Плотность состояний и концентрация двумерных электронов.
- 7. Особенности экранирования двумерными электронами. Двумерные плазмоны.
- 8. Энергетический спектр электронов в квантующем магнитном поле.
- 9. Целочисленный квантовый эффект Холла и квантовые осцилляции в двумерных системах.
- 10. Дробный квантовый эффект Холла.
- 11. Квантовые поправки к проводимости в двумерных структурах.
- 12. Типы полупроводниковых сверхрешёток.
- 13. Энергетический спектр электронов в сверхрешётках.
- 14. Особенности переноса электронов вдоль и перпендикулярно оси сверхрешётки.
- 15. Методы получения квантовых нитей и квантовых точек.
- 16. Энергетический спектр электронов в одномерных и нуль-мерных системах.
- 17. Кулоновская блокада в квантовых точках.
- 18. Квантование проводимости одномерных проводников в баллистическом режиме.
- 19. Кристаллическая и электронная структура графита.
- 20. Соединения внедрения в графит. Получение и строение.
- 21.. Сверхпроводимость соединений внедрения в графит.
- 22. Структура и электронное строение графена.
- 23. Углеродные нанотрубки.
- 24. Фуллерен, фуллерит, фуллериды.
- 25. Сверхпроводимость фуллеридов.
- 26. Дихалькогениды переходных металлов. Строение и свойства.
- 27. Переход Пайэрлса в одномерных проводниках.
- 28. Волны зарядовой плотности.
- 29. Аналог квантового эффекта Холла в слоистых полупроводниках.
- 30. Легирование квазиодномерных органических полупроводников.
- 31. Квазиодномерные органические металлы и сверхпроводники.

7. Ресурсное обеспечение:

7.1. Перечень основной и дополнительной литературы

Основная литература:

- 1. М.А. Херман. Полупроводниковые сверхрешетки. Москва, Мир, 1979.
- 2. Т. Андо, А. Фаулер, Ф. Стерн. Электронные свойства двумерных систем. Москва, Мир, 1982.
- 3. Л. Ченг, К. Плог. Молекулярно-лучевая эпитаксия. Москва, Мир, 1989.
- 4. И.Г. Черныш, Н.И. Карпов, Г.П. Приходько. Физико-химические свойства графита и его соединений. Киев, Наукова Думка, 1990.
- 5. В.А. Кульбачинский. Двумерные, одномерные, нульмерные структуры и сверхрешетки. Москва, физический факультет МГУ, 1998.

Методические указания

В.А. Кульбачинский. «Низкокоразмерные структуры и сверхрешётки» в сборнике «Сборник учебных программ высшего колледжа наук о материалах». Москва, ВКНМ МГУ, 2000.

- 7.2. Перечень лицензионного программного обеспечения, в том числе отечественного производства (подлежит обновлению при необходимости)

 Не требуется
- 7.3. Описание материально-технического обеспечения. аудитория с доской, компьютерный проектор
- 8. Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.
- 9. Разработчик (разработчики) программы. д.ф.-м.н., проф. В.А. Кульбачинский