На правах рукописи

Tenfr

ПОПКОВ Вадим Игоревич

ФОРМИРОВАНИЕ, СТРОЕНИЕ И СВОЙСТВА НАНОКРИСТАЛЛИЧЕСКОГО ОРТОФЕРРИТА ИТТРИЯ

02.00.21 – химия твердого тела 02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

> Санкт-Петербург 2017

Работа выполнена на базе ФГБУН «Физико-технический институт им. А.Ф. Иоффе Российской академии наук» и ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)».

Научные руководители:	 доктор химических наук, профессор, член-корреспон РАН Гусаров Виктор Владимирович, зав. лабораторией не неорганических материалов ФГБУН «Физико-техниче институт им. А.Ф. Иоффе Российской академии на г. Санкт-Петербург 						
	кандидат химических наук, доцент Альмяшева Оксана Владимировна, доцент кафедры физической химии ФГАОУ ВО «Санкт-Петербургский						
	государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)», г. Санкт-Петербург						
Официальные	доктор химических наук, профессор, член-корреспондент						
оппоненты:	РАН						
	Бамбуров Виталий Григорьевич, г.н.с. лаборатории хими соединений редкоземельных элементов ФГБУН «Инстит химии твердого тела Уральского отделения Российско академии наук», г. Екатеринбург						
	доктор химических наук						
	Кецко Валерий Александрович, зав. центром коллективного пользования физическими методами исследования веществ и материалов ФГБУН «Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук», г. Москва						
Ведущая	ФГБУН «Институт структурной макрокинетики и проблем						
организация:	материаловедения Российской академии наук», г. Черноголовка						

Защита состоится _____ 2017 года в _____ на заседании диссертационного совета Д.501.002.05 при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, г. Москва, Ленинские Горы, д. 1, стр. 73, факультет наук о материалах, аудитория ___.

С диссертацией можно ознакомиться в библиотеке Химического факультета МГУ имени М.В. Ломоносова

Автореферат разослан «___» ____ 2017 года.

Ученый секретарь Диссертационного совета Д.501.002.05, кандидат химических наук Еремина Е.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Ортоферриты редкоземельных элементов (РЗЭ) – широко известный класс химических соединений, которому отвечает общая формула REFeO₃ (RE = Ln, Y или Sc). Большинство ортоферритов РЗЭ характеризуются перовскитоподобной структурой, которая во многом определяет физикохимические свойства указанного класса соединений, а также позволяет широко варьировать соотношение изоморфных компонентов в соединениях переменного состава на их основе. Первоначальный интерес к ортоферритам РЗЭ был преимущественно связан с их уникальными магнитными свойствами - ферромагнитным, ферримагнитным и антиферромагнитным упорядочением, спиновой переориентации и обменного взаимодействия, процессами подвижностью доменной структуры и т. д. Среди множества ортоферритов РЗЭ особо выделяется ортоферрит иттрия – YFeO₃ – многообразие практических важных свойств которого (мультиферроик, полупроводник, фотокатализатор в видимой области света и т.п.) дополняется экономической целесообразностью использования материалов на его основе, ввиду наибольшей распространенности элементарного У среди всего ряда РЗЭ.

Несмотря на обилие научных работ, посвященных синтезу ортоферрита иттрия в различных формах (монокристаллы, поликристаллы, пленки и т.п.), особенностям его формирования в различных условиях, и исследованию проявляемых им свойств (магнитных, электрических, каталитических и т.д.), в настоящее время в рамках указанных направлений существует множество открытых вопросов как фундаментального, так и сугубо практического Их решение тесно связано со все более нарастающей характера. междисциплинарностью наук о материалах и появлению необходимости комплексного подхода к исследованию протекающих процессов в рамках выбранной системы. Исследуемые при этом особенности протекания процессов и наблюдаемых явлений могут быть использованы для создания физико-химического конструирования основ материалов не только нанокристаллических ферритов РЗЭ, но и для прогнозирования поведения других схожих систем - кобальтитов, манганитов и других сложнооксидных соединений РЗЭ.

В рамках представленной работы предпринята попытка комплексного исследования процессов формирования нанокристаллов ортоферрита иттрия в различных условиях с тем, чтобы определить общие закономерности формирования указанного соединения, что подробно отражено в целях и задачах работы. Полученные при этом результаты могут быть успешно использованы с некоторой корректировкой для прогнозирования поведения систем на базе ортоферритов других РЗЭ.

Цель работы

Основная цель работы - определение закономерностей формирования нанокристаллического ортоферрита иттрия в зависимости от условий его формирования и предыстории реагентов, а также закономерностей, связывающих размер кристаллов и морфологические особенности частиц с их магнитными свойствами.

Основные задачи исследования

– обоснование и выбор методов синтеза нанокристаллов YFeO₃;

- получение и физико-химическая характеризация нанокристаллов YFeO3;

– исследование химических, фазовых и морфологические превращений, сопровождающих процессы формирования нанокристаллов YFeO₃;

– определение закономерностей формирования наночастиц YFeO₃ в зависимости от условий получения и предыстории реагентов;

– исследование магнитных свойств нанокристаллов YFeO₃, полученных различными методами.

Научная новизна

– установлено, что формирование нанокристаллов с ромбической структурой *o*-YFeO₃ в гидротермальных условиях (T = 250-400°C, p = 50 МПа) происходит из рентгеноаморфных наногетерогенных агломератов в результате дегидратации иттрий- и железосодержащих компонентов и протекает без кристаллизации промежуточных фаз;

– установлено, что при термической обработке соосажденных гидроксидов железа и иттрия формирование нанокристаллического o-YFeO₃ происходит при T = 690°C преимущественно из рентгеноаморфного предшественника путем его дегидратации, которая не сопровождается кристаллизацией промежуточных фаз;

– установлено, что в условиях глицин-нитратного синтеза при глициннитратном соотношении (G/N = 2.4-4.2) формируются нанокристаллы с ромбической и гексагональной структурой - o-YFeO₃ и h-YFeO₃, с размерами 25-40 и 8-15 нм соответственно, соотношение мольных долей и размеры которых определяются температурным режимом в волне горения, количеством образующихся газообразных продуктов реакции и наличием пространственных ограничений;

– установлено, что при термической обработке рентгеноаморфных продуктов глицин-нитратного горения (*am*-YFeO₃) происходит образование нанокристаллов ромбического и гексагонального ортоферрита иттрия, которое протекает через последовательность фазовых превращений *am*-YFeO₃ $\rightarrow h$ -YFeO₃ $\rightarrow o$ -YFeO₃, последнее из которых происходит при достижении нанокристаллами *h*-YFeO₃ критического размера 15±2 нм;

– установлено, что при получении нанокристаллов *о*-YFeO₃ из рентгеноаморфных продуктов глицин-нитратного горения в последних присутствует предзародышевые образования двух типов, которые в

зависимости от их структурных особенностей могут быстро переходить в h-YFeO₃ или медленно перекристализовываться в o-YFeO₃;

– показано, что магнитное поведение нанокристаллов *o*-YFeO₃ в значительной степени зависит от метода и условий их получения: с уменьшением размера кристаллитов снижаются связанные со спиновой переориентацией эффекты, в частности уменьшается значение величины остаточной намагниченности, а различие в морфологии частиц (пластинчатая и стержневидная) приводит к отличию в значениях коэрцитивной силы нанокристаллов с близкими значениями размеров кристаллитов практически вдвое.

Теоретическое и практическое значение работы

Полученные в работе результаты по определению особенностей и механизмов формирования нанокристаллов ортоферрита иттрия в различных условиях являются научной основой для разработки физико-химических подходов к конструированию наноструктурированных материалов на базе ферритов РЗЭ. Установленный механизм и условия формирования метастабильной гексагональной модификации ортоферрита иттрия открывает поиску и получению метастабильных модификаций возможность К перовскитоподобных соединений, в т.ч. ферритов РЗЭ. Такие вещества и материалы на их основе проявляют необычное поведение, несвойственное известным стабильным модификациям, что в перспективе может привести к получению и исследованию целого класса соединений и структур с ограниченной размерной устойчивостью, стабилизация которых откроет новые возможности практического применения материалов на их основе.

Апробация работы и публикации

Основные результаты работы были апробированы в ходе выступления автора на 2 международных и 10 всероссийских конференциях. Материалы представленной работы опубликованы в форме 8 научных статей в российских и зарубежных рецензируемых журналах, входящих в перечень ВАК. Основное направление диссертационной работы было поддержано грантами Российского фонда фундаментальных исследования (РФФИ) № 13-03-12470-16-03-01056-а, 16-03-00532-а, 16-33-00345-мол а 13-03-0088-a, офим. (руководитель проекта), а также грантом Российского научного фонда № 16-13-10252.

Объем и структура работы

Диссертационная работа изложена на 140 страницах машинописного текста, иллюстрирована 44 рисунками и 8 таблицами. Список цитируемой литературы содержит 273 наименования. Работа состоит из введения, аналитического обзора (включает 3 раздела), экспериментальной части, результатов и их обсуждения (включают 2 раздела), заключения и списка литературы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы диссертации, сформулирована цель исследования и основные положения, выносимые на защиту, кратко обозначены основные подходы, направленные на решение поставленных в работе задач, показана научная новизна и практическая значимость работы, приведены сведения об апробации работы, публикациях, структуре и объеме диссертации.

Аналитический обзор содержит три раздела, в первом из которых приведена общая характеристика различных типов ферритов РЗЭ – ортоферритов (REFeO₃), ферритов-гранатов (RE₃Fe₅O₁₂) и ферритов со смешанной степенью окисления железа (REFeO₃·nFeO). Во втором разделе рассмотрены особенности состава и строения различных структурных модификаций ортоферрита иттрия (YFeO₃) – термодинамически стабильной ромбической и метастабильной гексагональной – а также рассмотрен вопрос структурной устойчивости данных модификаций YFeO₃ и их фазовые взаимопревращения. Третий раздел содержит описание основных методов получения нанокристаллов YFeO₃ с различной структурой и анализ их магнитных и полупроводниковых свойств. В заключении аналитического обзора приведены основные выводы, определяющие постановку цели и задач диссертационной работы.

В экспериментальной части описан синтез нанокристаллов ортоферрита иттрия с ромбической и гексагональной структурой методами глицин-нитратного синтеза, гидротермального синтеза и термической обработки прекурсоров различного химического состава. Помимо этого, в данном разделе содержится информация о комплексе физико-химических методов исследования, используемых для анализа полученных образцов, включающих порошковую рентгеновскую дифрактометрию, ИК Фурье- и сканирующую мёссбауэровскую спектроскопию, И просвечивающую электронные микроскопии, комплексный термический анализ, гелиевую пикнометрию, адсорбционный анализ удельной поверхности и определение магнитной восприимчивости с помощью вибрационной магнитометрии, а также термодинамический анализ.

В разделе **результаты и их обсуждение** приведены результаты исследований особенностей формирования нанокристаллов ортоферрита иттрия с различной структурой в зависимости от условий и метода их синтеза, описаны соответствующие механизмы формирования композиций на основе нанокристаллического ортоферрита иттрия и проанализированы магнитные свойства нанокристаллов YFeO₃ различного размера и морфологии, сформулированы основные выводы по диссертационной работе.

Список литературы содержит библиографическую информацию об основных научных работах и источниках информации, использованных при анализе полученных результатов и написании диссертационной работы.

Особенности формирования нанокристаллов ортоферрита иттрия

Глицин-нитратный синтез

Метод глицин-нитратного синтеза (ГНС) представляет собой окислительно-восстановительную реакцию глицина (восстановитель) и нитрат-ионов (окислитель), протекающую в растворе при нагревании, которая может быть представлена следующим образом:

 $3Y(NO_3)_3 + 3Fe(NO_3)_3 + 10C_2H_5NO_2 = 3YFeO_3 + 14N_2 + 20CO_2 + 25H_2O.$ Основным варьируемым параметров в этом случае является соотношение глицина и нитратов (*G/N*) в реакционном растворе и определяется следующим образом (расчет приведен для записанного уравнения реакции):

$$G/N = \frac{\nu_{Gly}}{\nu_{Nitrates}} = \frac{10}{3+3} \cong 1.67,$$

где v_{Gly} и $v_{Nitrates}$ – количество глицина и нитратов в реакционном растворе, соответственно.

В данной работе методом глицин-нитратного горения были получены композиции на основе ортоферрита иттрия с различным соотношением глицина и нитратов в исходном растворе (G/N = 0.6-4.2). В процессе глициннитратного горения с помощью хромель-алюмелевой термопары были измерены температуры в зоне реакции (рис. 1, а) и затем определен

Рисунок 1. Фазовый состав продуктов глицин-нитратного горения (а) и температура в зоне реакции (б) в зависимости от глицин-нитратного соотношения G/N

рентгенофазовый состав продуктов горения (рис. 1, б). Было показано, что в процессе глицин-нитратного горения возможно формирование аморфной $(am-YFeO_3),$ (*h*-YFeO₃) и гексагональной (o-YFeO₃) ромбической модификаций ортоферрита иттрия, причем наблюдается корреляция фазового состава продуктов горения И температуры в зоне реакции. Так температурному максимуму при соотношениях G/Nблизких К стехиометрическому (G/N)=1.8 - 2.4соответствует образование продуктах В горения преимущественно нанокристаллического *о*-YFeO₃

со средним размером кристаллов от 25 до 40 нм. При снижении температуры как в области избытка глицина, так и в области избытка нитратов наблюдается сначала формирование нанокристаллов гексагональной модификации YFeO₃

со средним размером кристаллов от 8 до 15 нм (G/N = 3.0 и G/N = 1.2), а затем и рентгеноаморфного ортоферрита иттрия ($G/N \ge 3.0$ и $G/N \le 1.2$). Помимо изменения фазового состава при варьировании глицин-нитратного соотношения G/N также изменяется и морфология продуктов горения (рис.2).

Рисунок 2. Микрофотографии продуктов глицин-нитратного горения, полученных при соотношении G/N, равном 3.6 (a), 3.0 (б) и 2.4 (в)

С увеличением температуры в зоне реакции при изменении G/N от 4.2 до 2.4 (рис. 1а) происходит существенное увеличение среднего размера внутреннего пространства пор и меняется толщина их стенок, которые составлены из нанокристаллов *о*-YFeO₃, *h*-YFeO₃ и рентгеноаморфных продуктов горения.

На основании результатов измерения удельной поверхности и пикнометрической плотности продуктов глицин-нитратного горения были рассчитаны характеристические толщины стенок пор в приближении бесконечной пластины конечной толщины. Зависимость средней толщина стенок пор от соотношения G/N и схема соответствующего изменения морфологического и фазового состава продуктов глицин-нитратного горения представлены на рис. 3. На основании полученных результатов можно заключить, что формирование нанокристаллов *о*-YFeO₃ в условиях глицин-нитратного горения представлены происходит при соотношении G/N = 2.4-2.7, когда в зоне реакции реализуется температура на уровне 800–900°С (рис. 1а), а количество

Рисунок 3. Схема изменения фазового и морфологического состава продуктов глицин-нитратного горения в зависимости от соотношения G/N

выделяющихся при этом газов сравнительно невелико, что обеспечивает формирование мезопористой наноструктуры продукта со средней толщиной стенок пор на уровне 40-60 нм 3). Нанокристаллы *h*-(рис. YFeO₃ В условиях глициннитратного горения формируются в тех случаях, когда зоне реакции В реализуется температура около 700°С, а объем образующихся газообразных продуктов достаточен для формирования мезопористой структуры продуктов с характеристической толщиной стенок пор на уровне 15 нм. В случае существенного избытка глицина в исходном растворе температуры в зоне реакции недостаточно для формирования кристаллических фаз и в результате процесса горения формируются преимущественно рентгеноаморфные продукты.

Термическая обработка продуктов ГНС

При термической обработке продуктов глицин-нитратного горения (G/N = 4.2) образованию ортоферрита иттрия предшествует набор физикохимических превращений, включающих удаление сорбированной образцом

воды И разложение карбонатных производных оксида иттрия (рис. 4), которые образуются активно после процесса горения в условиях избытка СО₂ в реакционном объеме. Иx разложение происходит в два этапа $(Y_2(CO_3)_3 \rightarrow Y_2O_2CO_3 \rightarrow Y_2O_2CO_3)$ Y_2O_3) заканчивает И только по достижении температуры ~ 850°C. Образование o-YFeO₃ наблюдается при температурах около 700-800°С и протекает с наибольшей скоростью 750°C. при Данные результаты В целом подтверждаются ИК спектроскопией продуктов глициннитратного горения до и

Рисунок 5. Результаты синхронного термического анализа продуктов глицин-нитратного горения (G/N = 4.2)

после термической обработки на воздухе при 900°С в течении 15 минут (рис. 6). На представленных ИК спектрах отчетливо фиксируется полоса поглощения, отвечающая валентным колебаниям связи Fe-O в октаэдре [FeO₆]

Рисунок 6. ИК спектры продуктов глицин-нитратного горения (G/N = 4.2) до и после термической обработки. 1 - исходный образец (после горения), 2 - термообработанный при 900°С в течение 15 мин.

подтверждающая И ортоферрита образование иттрия, a также полосы поглощения v(C-O) и v(C=O), свидетельствующие 0 присутствии соединений $Y_2(CO_3)_3$ $Y_2O_2CO_3$ И В образце после ДО И термической обработки, соответственно.

Анализ продуктов термической обработки образца (G/N = 4.2) при $T = 750^{\circ}$ С и $\tau = 1-120$ мин. методами рентгеновской

дифракции и мёссбауэровской спектроскопии (рис. 7) позволил установить наличие в исходном образце предзародышевых образований двух типов - $(am)_2$ -YFeO₃ существенно $(am)_1$ -YFeO₃ И c различающимися мёссбауэровскими характеристиками (IS и QS). Показано, что фаза (am)₂-YFeO₃ имеющая параметры *IS* и *QS* близкие к *h*-YFeO₃ при термообработке быстро переходит в указанную фазу, в то время как (*am*)₁-YFeO₃ ввиду отсутствия структурной преемственности с кристаллическими фазами YFeO3 медленно перекристаллизовывается. При этом преобладающим на большей части временного интервала является процесс фазового перехода h-YFeO₃ в o-YFeO₃, который завершается только к двум часам термической обработки Установлено, композиции. что основным фактором, определяющим

Рисунок 7. Зависимость фазового состава образца от времени изотермической выдержки при 750°С, определенного методом рентгеновской дифракции и мёссбауэровской спектроскопии

Среднии размер кристаллитов (D), нм Рисунок 8. Распределение кристаллитов $YFeO_3$ по размерам в образце (G/N=4.2) термически обработанном при 750°С в течение 10 мин.

протекание данного фазового перехода, является размерный заключающийся фактор, В неустойчивости нанокристаллов h-YFeO₃ при достижении ИМИ размера больше 15±2 нм (рис. 8). На представленных данных небольшая область наложения распределений кристаллитов *h*-YFeO₃ o-YFeO3 И по размерам соответствует

области малой устойчивости нанокристаллов h-YFeO₃ и в случае превышения ими критического размера $D_{\kappa pum}$ ведет к необратимому фазовому переходу в

термодинамически стабильную в данных условиях ромбическую модификацию ортоферрита иттрия. Термическая обработка продуктов глициннитратного горения в описанных выше

условиях

Рисунок 9. Микрофотографии продуктов глицин-нитратного горения до (а) и после (б) термической обработки при 900°С в течение 15 мин.

не только к изменению фазового состава композиции, но и ожидаемо изменяет ее морфологию (рис. 9). Так мезопористая наноструктура продуктов глициннитратного горения сменяется на нанополикристаллическую, сформированную изометрическими частицами *o*-YFeO₃.

Гидротермальный синтез

приводит

Выбор условий гидротермальной обработки соосажденных гидроксидов железа (III) и иттрия с целью получения нанокристаллов YFeO₃ основывался на предварительном термодинамическом расчете, построении И диаграммы анализе состояния систем Fe₂O₃-

Рисунок 10. Диаграмма превращений в системах Fe₂O₃-H₂O и Y₂O₃-H₂O в координатах p-T

 H_2O и Y_2O_3 - H_2O в координатах *p*-*T* (рис. 10). На основании представленных данных были выбраны условия обработки - температурный интервал 200-400°C и давление 50 МПа – в рамках которых должны происходить процессы дегидратации гидроксидных соединений до простых оксидов, образование которых необходимо для процесса формирования YFeO₃.

Рентгенофазовый анализ продуктов гидротермальной обработки гидроксидов в указанных выше условиях показал, что процесс образования нанокристаллов *o*-YFeO₃ сопровождается кристаллизацией гидроксокарбоната иттрия Y₂(OH)₄CO₃ и α-Fe₂O₃, появление которых связано с нарушением однородности гидроксидного прекурсора вследствие его

гидротермальной обработки соосажденных гидроксидов в

 CO_2 реакции С И не является основным каналом образования 0-YFeO₃, поскольку основная его часть формируется ИЗ рентгеноаморфного вещества (рис. 11). Стоит отметить, что количества иттрий-И железосодержащих компонентов в прекурсоре совпадают в

зависимости от температуры изотермической выдержки (4ч) пределах погрешности использованного метода определения, что указывает на их нахождение во взаимосвязанном состоянии, нарушение которого приводит к изменению направления физико-химических превращений. Это также подтверждается

анализом средних кристаллитов размеров иттрий-И железосодержащих фаз. приведенных в пересчете на <FeO_{1.5}> и <YO_{1.5}>, и кристаллитов o-YFeO₃ (рис. 12). Показано, что размеры средние нанокристаллов o-YFeO₃ изменяются BO всем температурном интервале симбатно с изменением

Рисунок 12. Изменение средних размеров кристаллитов в зависимости от температуры изотермической выдержки (4ч)

приведенных средних размеров кристаллитов иттрий- и железосодержащих компонентов, что может свидетельствовать о нахождении компонентов системы в прекурсоре в форме наногетерогенного агломерата. На основании полученных результатов была предложена схема физико-химических превращений, протекающих при гидротермальной обработке соосажденных

Рисунок 13. Схематическое изображение механизма физико-химических процессов, сопровождающих образование нанокристаллов о-YFeO3 в гидротермальных условиях

Рисунок 14. Микрофотография продуктов гидротермального синтеза о-YFeO3

гидроксидов железа (III) и иттрия и приводящих к образованию нанокристаллов *о*-YFeO₃ (рис. 13), иллюстрирующая как основной процесс формирования ортоферрита иттрия, так и побочный процесс раздельной кристаллизации компонентов системы в форме *α*-Fe₂O₃ и моноклинного *m*-Y₂(OH)₄CO₃. Однако стоит отметить, что морфология образующихся в процессе гидротермального синтеза o-YFeO3 нанокристаллов отличается ОТ упрощенно представленной на схеме (рис.13) и представляет собой как правило стержневидные квазимонокристаллические структуры субмикронного размера (рис. 14), состоящие из отдельных нанокристаллов *о*-УFeO₃, что следует из сопоставления их

размеров со средним размером кристаллитов (рис. 12). Образование подобных структур, по-видимому, связано с процессами срастания нанокристаллитов *о*-YFeO₃ в условиях сравнительно высокой температуры гидротермальной обработки.

Термическая обработка соосажденных гидроксидов

Нарушение гомогенности гидроксидного прекурсора при его частичной карбонатизации в процессе получения приводит к образованию ПОД воздействием термической обработки ортоферрита иттрия в двух существенно различных температурных интервалах (рис. 15). При температурах обработки прекурсора до 300°С в системе преимущественно протекают процессы удаления сорбированной и кристаллизационной воды, которые практически полностью заканчиваются при 350°С. Затем следует частичное разложение

гидроксокарбоната иттрия $Y_2(OH)_4CO_3$, которое протекает при температуре ~ $Y_2O_2CO_3$. 400°C до При более высокой температуре 550°C) (~ происходит кристаллизация железосодержащего компонента гетерогенной части прекурсора в форме α -Fe₂O₃. Основная часть ортоферрита образуется иттрия ПО основному механизму при температуре около 700°С, в побочный время как то механизм образования *о*-YFeO₃* реализуется только после полного разложения $Y_2O_2CO_3$ до простого оксида при температурах $\alpha - Y_2O_3$ выше 800°С. Эти заключения также подтверждаются результатами рентгенофазового анализа продуктов обработки термической соосажденных гидроксидов железа (III) и иттрия (рис. 16). которым согласно основное количество

Рисунок 15. Синхронный термический анализ соосажденных гидроксидов железа (III) и иттрия

нанокристаллов *о*-YFeO₃ образуется из рентгеноаморфного прекурсора и не сопровождается

кристаллизацией

промежуточных фаз. В это же время гетерогенная часть прекурсора, образующаяся в результате частичной карбонатизации гидроксидов, претерпевает раздельную кристаллизацию иттрий- и железосодержащих

компонентов, которые после разложения промежуточных карбонатных фаз также

Рисунок 16. Изменение фазового состава композиции при термической обработке на воздухе

образуют *о*-YFeO₃. На основании полученных результатов предложены схема

механизма формирования нанокристаллов *о*-YFeO₃ при термической обработке соосажденных гидроксидов на воздухе, учитывающая два основных

Рисунок 17. Схематическое изображение механизма формирования нанокристаллов о-YFeO₃ в условиях термической обработки соосажденных гидроксидов на воздухе

канала образования ортоферрита иттрия (рис. 17).

Средний размер нанокристаллитов *о*-УFeO₃ образующихся в данных условиях по результатам анализа уширения линий рентгеновской дифракции составляет 35±5 нм. Изометрическая морфология наночастиц *о*-УFeO₃ и их высокая агломерированность (рис. 18) являются характерными особенностями наноструктурированных оксидов, получаемых путем термической обработки прекурсоров различного химического состава на воздухе (см. рис. 9б).

Рисунок 18. Микрофотография нанокристаллов o-YFeO₃, полученных термической обработкой соосажденных гидроксидов на воздухе

Особенности магнитного поведения нанокристаллов ортоферрита иттрия

Магнитные свойства нанокристаллов ромбического ортоферрита иттрия, полученного четырьмя методами, существенно различающимися как по химической предыстории реагентов, так и по условиям их дальнейшей обработки, были исследованы методом вибрационной магнитометрии с целью определения влияния среднего размера кристаллитов o-YFeO₃ и их морфологии на магнитное поведение нанопорошков и их основные функциональные характеристики – коэрцитивность (H_{coerc}) и остаточную намагниченность (M_{res}). Обозначение исследованных образцов и их краткое описание приведены в таблице 1.

Таблица	1.	Условия	получения,	морфология	И	средний	размер		
нанокристаллитов <i>о</i> -YFeO ₃ , полученных различными методами									

№	Метод получения	Морфология наночастиц	Средний размер кристаллитов	
#1	Термическая обработка продуктов ГНС ($G/N = 4.2$) на воздухе при 900°C в течение 15 мин.	Изометричная (рис. 9б)	29±3 нм	
#2	Прямой глицин-нитратный синтез (<i>G/N</i> = 2.4)	Пластинчатая (рис. 2в)	41±5 нм	
#3	Гидротермальный синтез из соосажденных гидроксидов при 400°С, 50 МПа в течение 3 ч.	Стержневидная (рис. 14)	49±5 нм	
#4	Термическая обработка соосажденных гидроксидов на воздухе при 900°С в течение 15 мин.	Изометричная (рис. 18)	58±6 нм	

Петли магнитного гистерезиса описанных выше образцов наноструктурированного ортоферрита иттрия с существенно различающимися морфологией частиц и размерами кристаллитов o-YFeO₃ были получены с использованием вибрационной магнитометрии при температуре 4 и 300К и приведены на рисунке 19. Установлено, что снижение среднего размера нанокристаллов o-YFeO₃ от 58±6 нм до 29 ±3 нм приводит к

Рисунок 19. Петли магнитного гистерезиса (4 и 300К) нанокристаллов о-YFeO₃, полученных различными методами

снижению ИХ остаточной 273 намагниченности ОТ ети/моль до 70 ети/моль. В тоже самое время образцов коэрцитивность увеличивается от 1.8 до 20 кОе. На указанные характеристики значительное влияние морфология оказывает И наночастиц. изменение которой с пластинчатой (#2) на стержневидную (#3) приводит к росту *H*_{coerc} в два раза, что связано С различными соотношениями магнетокристаллического И доменного вкладов. Полученные результаты позволяют проводить синтез o-YFeO₃ нанокристаллов с заданным магнитным

поведением.

ЗАКЛЮЧЕНИЕ

1. В результате исследования особенностей формирования ортоферрита иттрия в условиях глицин-нитратного горения определены границы глициннитратного соотношения G/N, в рамках которых возможно формирование как термодинамически стабильного *o*-YFeO₃, так и метастабильного *h*-YFeO₃ (G/N = 1.2 – 3.0), а в случае большого избытка глицина или нитратов в смеси ($G/N \ge 3.0$ и $G/N \le 1.2$, соответственно) – рентгеноаморфных композиций на основе YFeO₃.

2. Показано, что возможность формирования метастабильного *h*-YFeO₃ в условиях глицин-нитратного синтеза связана с особой нанопористой микроструктурой образующейся композиции, наличие пространственных ограничений в которой препятствуют росту частиц *h*-YFeO₃ и их трансформации в *o*-YFeO₃.

3. Определено ориентировочное значение размерного критерия устойчивости метастабильной гексагональной модификации ортоферрита иттрия – 15±2 нм, при превышении которого нанокристаллы *h*-YFeO₃ трансформируются в термодинамически стабильную ромбическую модификацию ортоферрита иттрия.

4. Вследствие изучения особенностей формирования нанокристаллов *o*-YFeO₃ в гидротермальных условиях, показано, что при гидротермальной обработке соосажденных гидроксидов железа (III) и иттрия формирование нанокристаллов YFeO₃ происходит при дегидратации гидроксидного прекурсора без образования промежуточных фаз.

5. Установлено, что в гидротермальных условиях формирующиеся нанокристаллы *о*-YFeO₃ претерпевают срастание с образованием квазимонокристаллического сростка наночастиц ортоферрита иттрия.

6. Показано, что при термической обработке соосажденных гидроксидов железа (III) и иттрия на воздухе формирование нанокристаллов *о*-YFeO₃ происходит по двум механизмам. Первый механизм определяется процессом постепенной дегидратации гидроксидного предшественника, протекающим, как и в случае гидротермальной обработки, без кристаллизации заметного количества промежуточных кристаллических фаз и заканчивающийся при температуре около 690°С. Второй механизм формирования ортоферрита иттрия связан с частичной карбонатизацией гидроксидного прекурсора, образованию ортоферрита которое препятствует иттрия вплоть до температуры около 820°С и предваряется последовательным разложением ряда оксикарбонатов иттрия.

7. В результате исследования особенностей формирования нанокристаллов *h*-YFeO₃ и *o*-YFeO₃ при термической обработке рентгеноаморфных продуктов глицин-нитратного горения в условиях избытка глицина, показано, что, образование нанокристаллов гексагональной и ромбической модификации ортоферрита иттрия происходит из двух принципиально различных предшественников, находящихся в рентгеноаморфном прекурсоре, что определяет направление, скорость и температуру эволюции фазового и дисперсного состава данной композиции.

8. На основании проведенного анализа зависимости магнитных свойств полученного *o*-YFeO₃ от среднего размера кристаллитов и их морфологии показано, что посредством изменения метода и условий формирования нанокристаллов ортоферрита возможно существенное варьирование его основных магнитных характеристик – коэрцитивной силы (от 2 до 21 кOe) и остаточной намагниченности (от 70 до 273 еmu/моль).

Материалы диссертации опубликованы в следующих работах:

1. <u>Popkov V.I.</u>, Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO₃ nanocrystals obtained by different soft-chemical methods // **J. Mater. Sci. Mater. Electron.**, 2017. DOI: 10.1007/s10854-017-6676-1

2. <u>Попков В.И.</u>, Альмяшева О.В., Панчук В.В., Семенов В.Г., Гусаров В.В. Роль предзародышевых образований в процессах формирования нанокристаллического ортоферрита иттрия // Докл. акад. наук, 2016, 471(4), 439-443.

3. <u>Popkov V.I.</u>, Almjasheva O.V., Nevedomskyi V.N., Sokolov V.V., Gusarov V.V. Crystallization Behavior and Morphological Features of YFeO₃ Nanocrystallites Obtained by Glycine-Nitrate Combustion // Nanosystems: Phys. Chem. Math., 2015, 6(6), 866-874.

4. <u>Попков В.И.</u>, Альмяшева О.В., Шмидт М.П., Изотова С.Г., Гусаров В.В. Особенности формирования наночастиц YFeO₃ при термообработке продуктов глицин-нитратного горения // **Журн. неорган. химии**, 2015,60(10), 1308-1315.

5. <u>Попков В.И.</u>, Альмяшева О.В., Шмидт М.П., Гусаров В.В. Механизм образования нанокристаллического ортоферрита иттрия при термообработке соосажденных гидроксидов // **Журн. общей химии**, 2015, 85(6), 901-907.

6. <u>Попков В.И.</u>, Альмяшева О.В., Гусаров В.В. Исследование возможностей управления структурой нанокристаллического ортоферрита иттрия при его получении из аморфных порошков // **Журн. прикл. химии**, 2014, 87(10), 1416-1420.

7. <u>Popkov V.I.</u>, Almjasheva O.V. Formation Mechanism of YFeO₃ Nanoparticles under the Hydrothermal Conditions // Nanosystems: Phys. Chem. Math., 2014, 5(5), 703-708.

8. <u>Попков В.И.</u>, Альмяшева О.В. Формирование нанопорошков ортоферрита иттрия YFeO₃ в условиях глицин-нитратного горения // **Журн. прикл. химии**, 2014, 87(2), 185-189.

9. <u>Попков В.И.</u>, Василевская А.К. Особенности формирования и эволюции нанокристаллов YFeO₃ при термической обработке продуктов глициннитратного горения // Сборник трудов всероссийской конференции "Химия твердого тела и функциональные материалы - 2016" и XI семинара *"Термодинамика и материаловедение"*. Екатеринбург. 20-23 сентября 2016 г. С. 257.

10. <u>Попков В.И.</u> Формирование наночастиц ортоферрита иттрия термической обработкой продуктов соосаждения // Материалы научной конференции, посвященной 186-й годовщине образования СПбГТИ (ТУ). Санкт-Петербург. 2-3 декабря 2014 г. С. 246.

11. <u>Попков В.И.</u> Селективный глицин-нитратный синтез ортоферрита иттрия // Материалы 9-го семинара СО и УрО РАН «Термодинамика и Материаловедение». Новосибирск. 30 июня – 4 июля 2014 г. С. 140.

12. Бобохонова Е.Р., <u>Попков В.И.</u> Влияние условий осаждения прекурсора на размер наночастиц YFeO₃ // *Тезисы докладов IV научно-технической конференции молодых ученых «Неделя науки – 2014»*. Санкт-Петербург. 31 марта - 1 апреля 2014 г. С. 80.

13. Сосна Л.С., <u>Попков В.И.</u> Формирование частиц YFeO₃ при термической обработке продуктов глицин-нитратного горения // Тезисы докладов IV научно-технической конференции молодых ученых «Неделя науки – 2014». Санкт-Петербург. 31 марта - 1 апреля 2014 г. С. 54.

14. <u>Popkov V.I.</u> Self-propagating combustion synthesis of nanocrystalline yttrium orthoferrite YFeO₃ // Book of Abstracts 1-st International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures «Saint-Petersburg Open 2014». Saint Petersburg. 25-27 March 2014. P. 117-118.

15. <u>Попков В.И.</u> Образование ортоферрита иттрия YFeO₃ в условиях глициннитратного горения // Материалы научной конференции, посвященной 185-й годовщине образования СПбГТИ (ТУ). Санкт-Петербург. 27 ноября 2013 г. С. 238.

16. <u>Попков В.И.</u> Влияние химической предыстории на процесс фазообразование в системе Fe₂O₃-Y₂O₃ в гидротермальных условиях // *Тезисы докладов молодежной школы «Химия XXI века»*. Екатеринбург. 15-18 мая 2013 г. С. 17-18.

17. <u>Попков В.И.</u> Особенности фазообразования в системе Fe₂O₃-Y₂O₃ в условиях глицин-нитратного синтеза // Материалы 4-ой международной конференции «HighMatTech – 2013». Киев, Украина. 7-11 октября 2013 г. С. 185.

18. <u>Попков В.И.</u>, Альмяшева О.В. Влияние условий глицин-нитратного синтеза на свойства YFeO₃ // Тезисы докладов VIII Всероссийской конференции «Керамика и композиционные материалы». Сыктывкар. 17-20 июня 2013 г. С. 69-70.

19. <u>Попков В.И.</u>, Альмяшева О.В. Влияние условий осаждения прекурсора на свойства ортоферрита иттрия YFeO₃ // *Тезисы докладов III научнотехнической конференции молодых ученых «Неделя науки – 2013»*. Санкт-Петербург. 2-4 апреля 2013 г. С. 46.

20. <u>Попков В.И.</u> Синтез и исследование наночастиц ортоферрита иттрия YFeO₃ // Тезисы докладов II научно-технической конференции молодых ученых «Неделя науки – 2012». Санкт-Петербург. 28-29 марта 2012 г. С. 29.

Благодарности

Автор выражает искреннюю благодарность своим научным руководителям – В.В. Гусарову и О.В. Альмяшевой – за интерес и внимание к работе и активное участие в обсуждении ее результатов, а также коллективам кафедр физической химии СПбГТИ(ТУ) и ЛЭТИ, лаборатории новых неорганических соединений ФТИ им. А.Ф. Иоффе РАН за неоценимую помощь в работе над диссертационным исследованием, а также хочет лично Фундаменского познавательные поблагодарить B.C.за беседы 0 рентгеновской дифрактометрии, С.Г. Изотову за знакомство с основами спектроскопических методов исследования, В.Г. Семенова и В.В. Панчука за возможность проведения мёссбауэровских исследований и помощь в интерпретации их результатов, Д.Г. Келлерман и А.С. Семенову за помощь в исследовании особенностей магнитного поведения объектов исследования и активное участие в анализе полученных результатов, В.Н. Неведомскому за проведения исследований методом возможность просвечивающей электронной микроскопии и В.В. Соколова за помощь при исследовании параметров мезопористой структуры объектов исследования.

Автор также сердечно благодарит А.К. Бачину за всестороннюю помощь и поддержку на всех этапах работы над диссертационным исследованием и ценные замечания по работе, а также дорогих родителей – И.А. Попкова и Е.И. Попкову – за неоценимую поддержку и веру в успешность данного начинания.