

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра радиохимии

На правах рукописи

Глазкова Яна Сергеевна

СИНТЕЗ И ЗОНДОВАЯ МЕССБАУЭРОВСКАЯ ДИАГНОСТИКА ПЕРОВСКИТОПОДОБНЫХ МАНГАНИТОВ AMn_7O_{12} (A = Ca, Sr, Cd, Pb) и $AMnO_3$ (A = Tl, Bi)

Специальности 02.00.01 – неорганическая химия

01.04.07 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Москва - 2017

Работа выполнена в лаборатории ядерно-химического материаловедения кафедры радиохимии химического факультета Московского государственного университета имени М.В. Ломоносова и Национальном Институте Наук о Материалах, Цукуба, Япония.

Научные
руководители:кандидат химических наук,
Соболев Алексей ВалерьевичКандидат химических наук,
Белик Алексей АлександровичОфициальные
оппоненты:Кецко Валерий Александрович
доктор химических наук, профессор
ФГБУН Институт общей и неорганической химии РАН
им. Н.С. Курнакова, заведующий ЦКП физическими методами ис-
следования веществ и материалов

Оштрах Михаил Иосифович

доктор физико-математических наук,

ФГАОУ ВПО Уральский федеральный университет им. Б.Н. Ельцина, кафедра физических методов и приборов контроля качества, главный научный сотрудник

<u>Ведущая</u> ФГБУН Институт физики твердого тела РАН организация:

Защита состоится "" 2017 года в 15⁰⁰ часов на заседании Диссертационного Совета Д 501.002.05 при Московском государственном университете имени М.В. Ломоносова по адресу: 199992, ГСП, Москва, В-234, Ленинские горы, МГУ, факультет наук о материалах, Лабораторный корпус Б, аудитория 235.

С диссертацией и авторефератом можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В. Ломоносова и на сайте химического факультета <u>http://www.chem.msu.ru</u>. Текст автореферата размещен на сайте ВАК России <u>http://vak.ed.gov.ru</u>.

Автореферат разослан " " 2017 года

Ученый секретарь Диссертационного Совета Д 501.002.05, кандидат химических наук

Среннена Е.А. Еремина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Интерес к исследованию сложных оксидных соединений марганца, содержащих ян-теллеровские ионы $Mn^{3+}(3d^4)$, связан с большим разнообразием проявляемых ими физических свойств. Одними из наиболее известных представителей этих соединений являются перовскитоподобные манганиты (A,R)MnO₃ (A = Ca, Sr; R = P33), некоторые составы которых демонстрируют эффект колоссального магнетосопротивления (CMR), а также "двойные" манганиты AMn₇O₁₂ (A = Ca, Bi), проявляющие мультиферроидные свойства. Согласно современным теоретическим представлениям, указанные и многие другие функциональные свойства рассматриваемых манганитов связаны с явлениями зарядового упорядочения разновалентных катионов ${\rm Mn}^{3+}/{\rm Mn}^{4+}$ и *орбитального упорядочения* (кооперативного эффекта Яна-Теллера) катионов Mn³⁺ в октаэдрической кислородной координации. Несмотря на большое количество работ, посвященных исследованию перовскитоподобных манганитов, многие фундаментальные вопросы, в том числе связанные с характером протекания процессов зарядового и орбитального упорядочений, особенно в областях температур индуцируемых ими структурных и магнитных фазовых переходов, до сих пор являются предметом многочисленных дискуссий.

Для продвижения в решении этих и целого ряда других фундаментальных вопросов, связанных со сложной "орбитальной физикой" манганитов, весьма актуальным становится синтез новых составов манганитов, которые могут служить не только в качестве модельных систем для апробации и развития различных физических моделей, но и также иметь улучшенные функциональные характеристики для возможного практического использования. Получение новых материалов требует развития и усовершенствования уже существующих синтетических подходов, к которым можно отнести синтез с использованием высокого давления. При всех неоспоримых преимуществах данной методики, в частности, возможности получения метастабильных при обычных условиях соединений, значительного уменьшения времени синтеза, возможности стабилизации необычных валентных состояний атомов [1], синтез под высоким давлением нельзя отнести к общедоступным синтетическим методикам. Это связано не только с необходимостью использования специального оборудования, но и с крайней "чувствительностью" продуктов синтеза к выбору исходных прекурсоров, а также очень узким диапазоном оптимальных условий (давление, температура и время отжига...), при которых удается получить однофазные продукты требуемого состава. Таким образом, отработка условий синтеза с применением высокого давления всегда оказывается самостоятельной многопараметрической задачей неорганической химии, требующей проведения анализа термодинамических и структурных данных об исследуемых объектах.

Другой не менее важной задачей при исследовании манганитов является развитие новых подходов к диагностике их локальной структуры, к которым можно отнести зондовую мессбауэровскую спектроскопию. Использование в качестве источников информации зондовых мессбауэровских атомов, вводимых в небольших количествах

3

в структуру изучаемого соединения, позволяет применять данный локальный метод для исследования систем, не содержащих в своем составе в качестве основных компонентов мессбауэровских нуклидов. К настоящему времени выполнено большое количество работ с использованием зондовой мессбауэровской спектроскопии, в том числе и для исследования различных оксидных соединений марганца. Тем не менее, вполне резонный вопрос скептиков данного подхода состоит в том, насколько зондовые атомы, имеющие собственную электронную конфигурацию и свои кристаллохимические особенности, способны объективно отражать специфику локальной структуры допированного ими соединения? Исследуемые в настоящей работе новые составы манганитов, обладающие большим набором структурных и магнитных фазовых переходов, служат идеальными модельными системами для апробации и развития зондовой мессбауэровской спектроскопии. Комбинированное использование мессбауэровской спектроскопии и "традиционных" методов диагностики может позволить получить дополнительную информацию о динамике орбитальных и зарядовых флуктуаций в перовскитоподобных манганитах.

Наконец отдельный круг вопросов, которые в первую очередь могут быть адресованы физике конденсированного состояния, связан с поведением микроколичеств парамагнитных атомов в магнитоупорядоченных матрицах с конкурирующими (фрустрированными) обменными взаимодействиями. Многочисленные примеры мультиферроиков, железосодержащих сверхпроводников и других классов магнитных материалов с фрустрированными взаимодействиями показывают, что даже микроколичества (0.2 - 0.8 ат.%) парамагнитных примесных атомов способны существенно повлиять на физические параметры легируемых матриц. Механизмы и характер этого влияния до сих пор остаются малоизученными. Мессбауэровская спектроскопия, благодаря своему рекордному разрешению по энергии (~ 10^{-8} эВ), является одним из немногих методов, которые не только позволяют проследить на уровне отдельных атомов за их валентным, структурным и магнитным состоянием, но и получить новые сведения о характере вносимых ими возмущениях микроструктуры исследуемого соединения.

<u>Цель работы</u>

Целью настоящей работы является синтез с применением высокого давления новых перовскитоподобных манганитов $AMnO_3$ (A = Tl, Bi) и AMn_7O_{12} (A = Ca, Sr, Cd, Pb), а также легированных мессбауэровскими нуклидами ⁵⁷Fe составов $AMn_{1-x}^{57}Fe_xO_3$ и $AMn_{7-x}^{57}Fe_xO_{12}$ ($0.04 \le x \le 0.08$). Зондовое мессбауэровское исследование взаимосвязи между локальной структурой полученных манганитов и процессами зарядового, орбитального и спинового упорядочений подрешетки марганца.

В соответствии с поставленной целью в работе решались следующие основные задачи:

1. Разработка оптимальных методик синтеза манганитов, позволяющих не только получать однофазные образцы, но и стабилизировать в их структуре небольшие количества мессбауэровских зондовых атомов ⁵⁷Fe. 2. Комплексное исследование (включающее структурные, магнитные, термодинамические и мессбауэровские измерения) характера влияния зондовых атомов на макроскопические характеристики исследуемых соединений.

3. Определение структурного, зарядового и спинового состояний мессбауэровских атомов в неэквивалентных позициях манганитов, поиск корреляций локальных характеристик исследуемых соединений с параметрами сверхтонких взаимодействий зондовых атомов.

4. Исследование температурных зависимостей параметров сверхтонких взаимодействий мессбауэровских ядер в области структурных и магнитных фазовых переходов, связанных с процессами орбитального и зарядового упорядочений в подрешетке марганца.

5. Разработка и апробация методов расчета параметров тензора градиента электрического поля (ГЭП) на ядрах зондовых атомов с учетом данных о модулированных кристаллографической и магнитной структурах исследуемых соединений.

6. Расшифровка и анализ релаксационной сверхтонкой магнитной структуры мессбауэровских спектров, обусловленной динамическим поведением фрустрированных состояний парамагнитных примесных центров в магнитоупорядоченной области температур.

Научная новизна

Научная новизна работы определяется синтезом новых составов перовскитоподобных манганитов, ранее не изученных методом зондовой мессбауэровской спектроскопии, что позволило впервые получить важные результаты, выносимые на защиту в виде следующих положений.

1. Методики синтеза (с привлечением методов химии высокого давления) новых составов манганитов TlMnO₃ и AMn_7O_{12} (A = Sr, Cd, Pb), позволившие не только синтезировать однофазные образцы, но и стабилизировать в их структуре микроколичества мессбауэровских зондовых атомов ⁵⁷Fe.

2. Результаты исследования с помощью "макроскопических" методов структуры, магнитных и термодинамических характеристик синтезированных манганитов, а также данные мессбауэровских исследований валентного состояния и структуры локального окружения зондовых атомов в исследуемых системах.

3. Результаты мессбауэровского исследования манганитов $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Sr, Cd, Pb; x = 0.04, 0.08) в области температур зарядового упорядочения ($T < T_{CO}$) индивидуальных валентных состояний Mn^{3+} и Mn^{4+} .

4. Результаты исследования характера эволюции параметров сверхтонких взаимодействий зондовых ядер ⁵⁷Fe в области структурного фазового перехода $R\overline{3} \leftrightarrow Im\overline{3}$ манганитов $AMn_{6.92}^{57}Fe_{0.08}O_{12}$ (A = Sr, Pb) и Cd $Mn_{6.96}^{57}Fe_{0.04}O_{12}$, связанного с протеканием электронного обмена $Mn^{3+} \leftrightarrow Mn^{4+}$.

5. Данные теоретического расчета параметров тензора ГЭП на ядрах ⁵⁷Fe в модулированной кристаллической решетке $CaMn_{6.96}$ ⁵⁷Fe_{0.04}O₁₂, образующейся в результате кооперативного эффекта Яна-Теллера (орбитального упорядочения) катионов Mn³⁺. Сравнение с результатами мессбауэровского исследования изоструктурных манганитов AMn_{7-x}^{57} Fe_xO₁₂ (A = Cd, Sr; x = 0.04, 0.08).

6. Результаты модельной расшифровки и анализа магнитной сверхтонкой структуры мессбауэровских спектров $BiMn_{0.96}^{57}Fe_{0.04}O_3$ и $TlMn_{0.95}^{57}Fe_{0.05}O_3$ с привлечением данных об орбитальном и магнитном упорядочениях в рассматриваемых манганитах.

7. Результаты модельной расшифровки сверхтонкой магнитной структуры спектров $AMn_{6.96}^{57}Fe_{0.04}O_{12}$ (A = Ca, Cd) и $SrMn_{6.92}^{57}Fe_{0.08}O_{12}$ с привлечением известных данных о геликоидальной несоразмерной магнитной структуре манганита $CaMn_7O_{12}$.

Практическая значимость работы

Предложены методики получения с применением высокого давления новых составов перовскитоподобных манганитов Mn(III)/Mn(IV). Описаны методы введения в структуру изучаемых соединений микроколичеств мессбауэровских нуклидов. Проведенные исследования показали высокую эффективность зондовой мессбауэровской спектроскопии, с помощью которой удалось получить ранее недоступную информацию о поведении отдельных примесных атомов ⁵⁷Fe (валентном состоянии, структуре локального окружения) в перовскитоподобных оксидах, имеющих фундаментальное и практическое значение. Результаты данной работы показали, что информация, получаемая из спектров зондовых атомов, адекватно отражает особенности локальной кристаллографической и магнитной структур рассматриваемых классов соединений. Это обстоятельство демонстрирует перспективность использования зондовой мессбауэровской спектроскопии для изучения локальной структуры различных классов соединений, которые не содержат в своем составе в качестве основных компонентов мессбауэровские нуклиды.

Полученные в работе результаты расширяют представления о химии и физики примесных атомов в твердых телах и могут быть использованы в лекционных курсах, а также учебных пособиях по современной химии твердого тела, физике конденсированного состояния и материаловедении.

<u>Личный вклад автора</u>

Автором выполнены анализ и систематизация литературных данных по исследуемым и родственным им соединениям, отработаны методы синтеза всех представленных в работе соединений, а также методики введения в их структуру микроколичеств зондовых атомов. Диссертант провел анализ фазового состава полученных образцов, бо́льшую часть магнитных и термодинамических измерений. Автор самостоятельно проводил измерения мессбауэровских спектров, их интерпретацию и анализ полученных данных. Все полуэмпирические расчеты сверхтонких параметров также полностью выполнены автором работы.

Апробация работы

Результаты работы доложены на российских и международных конференциях: "International Conference on the Applications of the Mössbauer Effect" (Гамбург, 2015);

"Conference on Solid Compounds of Transition Elements" (Сарагоса, 2016); "Mössbauer Spectroscopy in Materials Science" (Хлоховец, 2014), "Mössbauer Spectroscopy and its Applications" (Суздаль, 2014; Казань, 2016); "Moscow International Symposium on Magnetism" (Москва, 2014), а также на конференциях молодых учёных "Актуальные проблемы неорганической химии" (Звенигород, 2014, 2015, 2016) и "Ломоносов" (Москва, 2014, 2015).

<u>Публикации</u>

По материалам диссертации опубликованы 19 научных работ, из них 7 статей в российских и международных журналах и 12 тезисов докладов на конференциях.

Объем и структура работы

Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов и их обсуждения, заключения, выводов и списка литературы. Представленная работа изложена на 151 странице, содержит 75 рисунков, 24 таблицы, 146 ссылок на литературные источники.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении определена цель работы и дано обоснование выбора объектов исследования.

Глава I. Обзор литературы

В обзоре литературы обсуждаются особенности кристаллической и магнитной структур простых и двойных перовскитов, а также характерные для них фазовые переходы, связанные с процессами зарядового, орбитального и магнитного упорядочений. Отдельно рассмотрены аспекты синтеза перовскитоподобных оксидов переходных металлов в условиях высоких давлений. Проанализирован ряд работ, посвященных исследованию перовскитов методами мессбауэровской спектроскопии.

Глава II. Синтез образцов и методика эксперимента

2.1. Методика синтеза образцов перовскитопобных манганитов

Синтез образцов *A*'MnO₃ и *A*Mn₇O₁₂ (*A*' = Bi, Tl; *A* = Sr, Cd, Pb), в том числе и легированных ⁵⁷Fe, проводили в аппарате *belt*-типа при давлении 6 ГПа. Стехиометрическую смесь соответствующих оксидов (табл. 1) запрессовывали в золотую капсулу и отжигали в течение нескольких часов при высоких температурах. После проведения нескольких тестовых синтезов были подобраны оптимальные условия (табл. 1), позволяющие получать наиболее однофазные образцы. Прекурсор 4*H*-SrMnO₃ получали в результате длительного (~ 48 часов) отжига при 1373 К смеси SrCO₃ и Mn₂O₃, перетирания промежуточных продуктов и повторного отжига (24 часа) при 1273 К.

Образцы манганита $CaMn_{6.96}^{57}Fe_{0.04}O_{12}$ получали по "нитратной" методике: стехиометрическую смесь растворов нитратов кальция, марганца Mn(II) и изотопа железа-57 упаривали досуха, сухой остаток перетирали и отжигали в токе кислорода при 1223 К в течение 240 часов (с промежуточным перетиранием).

Таблица 1. Условия синтеза, прекурсоры и составы манганитов.

Образец	Исходные реагенты	Условия отжига	Фаза	
BiMn _{0.96} ⁵⁷ Fe _{0.04} O ₃	Bi ₂ O ₃ , Mn ₂ O ₃ , ⁵⁷ Fe ₂ O ₃	6 ГПа, 1373 К, 1 час	<i>C</i> 2/ <i>c</i> , №15	
$TlMn_{0.95}{}^{57}Fe_{0.05}O_3$	Tl_2O_3 , Mn_2O_3 , ${}^{57}Fe_2O_3$	6 ГПа, 1500 К, 2 часа	P1, №2	
$SrMn_{6.92}^{57}Fe_{0.08}O_{12}$	4 <i>H</i> -SrMnO ₃ , Mn ₂ O ₃ , ⁵⁷ Fe ₂ O ₃	6 ГПа, 1573 К, 2 часа	<i>R</i> 3, №148	
CdMn _{6.96} ⁵⁷ Fe _{0.04} O ₁₂	CdO, Mn ₂ O ₃ , MnO ₂ , ⁵⁷ Fe ₂ O ₃	6 ГПа, 1373 К, 2 часа	<i>R</i> 3, №148	
$PbMn_{6.92}^{57}Fe_{0.08}O_{12}$	PbO, Mn ₂ O ₃ , MnO ₂ , ⁵⁷ Fe ₂ O ₃	6 ГПа, 1373 К, 2 часа	<i>R</i> 3, №148	
$CaMn_{6.96}{}^{57}Fe_{0.04}O_{12}$	$Ca(NO_3)_2$, $Mn(NO_3)_2$, ${}^{57}FeCl_3$	1223 К, 240 часов, О ₂	<i>R</i> 3, №148	

2.2. Методы исследования

Рентгенофазовый анализ образцов проводили на автоматических дифрактометрах RIGAKU Miniflex600 и RIGAKU Ultima III λ (CuK α), интервал измерения углов (2 θ) составлял от 10° до 80°, с шагом 0.02° и временем экспозиции 1 мин/град. Для интерпретации дифрактограмм использовали компьютерную программу "Match!".

Данные дифракции на *синхротронном излучении* двойных манганитов AMn_7O_{12} (A = Sr, Cd, Pb) были получены в температурном диапазоне от 113 до 583 К в большой камере Дебая-Шеррера на линии BL15XU (SPring-8) в интервале 2θ от 1° до 60° с ша-гом 0.003°. Длина волны монохроматического излучения составляла $\lambda = 0.70014$ Å. Перед проведением измерений образцы в виде порошков плотно упаковывали в стеклянные капилляры (Lindenmann, внутренний диаметр 0.1 мм). Во время низкотемпературных измерений заполненные образцами капилляры охлаждали в токе N₂. Для уточнения параметров кристаллической решетки методом Ритвельда использовали программу "RIETAN-2000".

Дифференциальную сканирующую калориметрию (ДСК) проводили на дифракционном сканирующем калориметре Mettler Toledo DSC1 STAR^e в интервале температур от 173 К до 423 К, скорость нагрева/охлаждения составляла 10 К/мин.

Измерения магнитной восприимчивости осуществлялись на магнитометре типа SQUID Quantum Design MPMS 1T в интервале температур от 2 K до 400 K в режимах ZFC (охлаждение образца в отсутствие внешнего магнитного поля) и FC (охлаждение образца во внешнем магнитном поле с напряженностью 10 кЭ).

Измерения теплоёмкости проводили на калориметре Quantum Design PPMS в интервале температур от 2 К до 300 К в режимах нагревания и охлаждения в дипазоне внешних магнитных полей от 0 кЭ до 90 кЭ.

Мессбауэровские спектры измерялись на спектрометре электродинамического типа, работающем в режиме постоянного ускорения. В качестве источника "мессбауэровского" излучения использовали 57 Co(Rh). Все значения химических сдвигов приводятся относительно α -Fe при 297 К. Анализ экспериментальных спектров осуществляли с использованием методов восстановления расределений и модельной расшифровки сверхтонких параметров парциальных спектров с помощью программного комплекса "SpectrRelax" [2]. Расчет параметров градиента электрического поля проводился с помощью программы "Gradient-NCMS", разработанной в НИЛ ядерно-химического материаловедения химического факультета МГУ.

2.3. Результаты "макроскопического" исследования

Результаты рентгенофазового анализа подтвердили однофазность всех синтезированных образцов. Краткие сведения о симметрии кристаллической решетки полученных манганитов представлены в табл. 1. Дифрактограммы манганитов AMn_7O_{12} (A = Sr, Cd, Pb), полученные с использованием синхротронного излучения, демонстрируют, что при понижении температуры появляются дополнительные сверхструктурные рефлексы, которые, как и в случае ранее исследованного манганита CaMn₇O₁₂ [3], могут быть отнесены к суперпространственной группе $R\overline{3}$ (00 γ)0, обусловленной структурной модуляцией.

Анализ диффрактограмм образцов манганитов, допированных зондовыми атомами ⁵⁷Fe, не позволил обнаружить каких-либо дополнительных рефлексов, связанных с изменением симметрии решетки исходных недопированных образцов (табл. 1) или появлением посторонних примесных фаз. Отдельная задача состояла в выяснении с помощью измерений макроскопических характеристик степени влияния примесных атомов на температуры структурных и магнитных фазовых переходов манганитов.

Сравнение данных магнитных и термодинамических измерений нелегированных манганитов с соответствующими данными для образцов, содержащих мессбауэровские атомы ⁵⁷Fe (рис. 1), показало, что во всех случаях в той или иной степени зондовые атомы железа оказывают влияние на температуры структурных и магнитных фазовых переходов (табл. 2).

 1^{-1} 1^{-1} 1^{-1} 1^{-1} 1^{-1}	$7^{-1}X = X = 12$		
Образец	$T_{\rm N2}/T_{\rm N1},{\rm K}$	<i>T</i> ₀₀ , K	<i>T</i> _{CO} , K
$BiMnO_{3}(BiMn_{0.96}^{57}Fe_{0.04}O_{3})$	99 (109) (T _C)	474 (413)	- (-)
$TlMnO_3(TlMn_{0.95}^{57}Fe_{0.05}O_3)$	92 (89) (T _C)	- (-)	- (-)
$SrMn_7O_{12}(SrMn_{6.92}^{57}Fe_{0.08}O_{12})$	63/87 (65/82)	265 (240)	404 (379)
$CdMn_7O_{12} (CdMn_{6.96}^{57}Fe_{0.04}O_{12})$	33/88 (35/83)	254 (220)	493 (473)
$PbMn_7O_{12} (PbMn_{6.92}^{57}Fe_{0.08}O_{12})$	77/83 (75/76)	294 (270)	397 (364)
 $CaMn_7O_{12} (CaMn_{6.96}{}^{57}Fe_{0.04}O_{12})$	50/90 (50/90)	258 (240)	462 (435)

Таблица 2. Температуры структурных (T_{CO} , T_{OO}) и магнитных (T_N) фазовых переходов в манганитах $AMn_{1-x}^{57}Fe_xO_3$ (A = Bi, Tl) и $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Sr, Cd, Pb, Ca).

В случае структурных фазовых переходов, связанных с орбитальным (T_{OO}) и зарядовым (T_{CO}) упорядочениями, введение примесных атомов приводит к существенному понижению соответсвующих значений T_{OO} и T_{CO} (табл. 2). В случае же магнитных переходов влияние примеси минимально, при этом в некоторых случаях введение парамагнитной примеси железа приводит как к незначительному увеличению (BiMn_{0.96}⁵⁷Fe_{0.04}O₃) температуры Кюри (T_C), так и к уменьшению (TlMn_{0.95}⁵⁷Fe_{0.05}O₃) этой величины.

В случае замещенных двойных манганитов $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Cd, Sr, Pb; x = 0.04, 0.08) на кривых зависимостей $C_P(T)/T$ присутствуют изломы, которые соответствуют двум низкотемпературным магнитным переходам при T_{N1} и T_{N2} (рис. 1в). Сопоставление этих зависимостей с соответствующими данными для образцов AMn_7O_{12} по казывает, что введение примесных атомов железа не приводит к существеным

ренные в режиме охлаждения (д).

Т, К

изменениям ни характера самой зависимости C_P/T , ни значений точек обоих низкотемпературных фазовых переходов (T_{N1} и T_{N2}). Как и для незамещённых манганитов, температура перехода T_{N1} практически одинакова для всех рассматриваемых манганитов, тогда как значение T_{N2} растёт с увеличением размера катиона A^{2+} (от 35 К для Cd до 76 К для Pb).

Глава III. Электрические сверхтонкие взаимодействия зондовых ядер ⁵⁷Fe в манганитах AMn_7O_{12} (A = Ca, Sr, Cd, Pb) и $AMnO_3$ (A = Tl, Bi)

В разделе 3.1. изложены результаты мессбауэровских исследований на ядрах ⁵⁷Fe локальной кристаллографической структуры семейства манганитов AMn_7O_{12} (A = Sr, Cd, Pb) в парамагнитной области температур, включающей точку (T_{CO}) структурного фазового перехода: ромбоэдрическая (пр. гр. $R\bar{3}$; $T < T_{CO}$) \leftrightarrow кубическая (пр. гр. $Im\bar{3}$; $T > T_{CO}$) фазы.

Мессбауэровские спектры $AMn_{6.92}^{57}Fe_{0.08}O_{12}$ (A = Sr, Pb) и CdMn_{6.96}^{57}Fe_{0.04}O₁₂ при $T < T_{CO}$ (рис. 2) представляют собой суперпозицию двух парциальных спектров Fe(1) и Fe(2) с практически одинаковыми химическими сдвигами ($\delta_1 \approx \delta_2$) и существенно различающимися квадрупольными расщеплениями ($\Delta_1 >> \Delta_2$) (табл. 3). Для кристаллохимической идентификации парциальных спектров были проведены расчеты главных компонент тензора ГЭП на ядрах зондовых катионов Fe³⁺, замещающих марганец в октаэдрических позициях Mn³⁺(9e) и Mn⁴⁺(3b) структуры манганитов AMn_7O_{12} (A = Sr, Cd, Pb). Сопоставление рассчитанных (Δ^{pac4}) и экспериментальных ($\Delta^{эксп}$) значений расщеплений (табл. 3) позволило предположить, что дублет Fe(1) с наибольшим расцепление Mn³⁺ в позициях 9e с искаженным октаэдрическим окружением. Квадрупольный дублет Fe(2) с наименьшим расщеплением (Δ_2) относится к катионам Fe³⁺, замещающим катионы Mn⁴⁺ (3b) в симметричном октаэдрическом кислородном окружении.

Отношение интенсивностей парциальных спектров $I_1/I_2 = 1.7 \div 3.0$ (с точностью до температурной зависимости факторов Дебая-Валлера для катионов железа в разных кристаллографических позициях) несколько отличается для некоторых составов от ожидаемого для манганитов $A(Mn^{3+})_3[(Mn^{3+})_3(Mn^{4+})]O_{12}$ отношения кратностей октаэдрических позиций $[Mn^{3+}]/[Mn^{4+}] = 3$. Данный результат может свидетельствовать о некотором предпочтении катионов Fe³⁺, обладающих "сферически-симметричной"

Рис. 2. Мессбауэровские спектры манганитов $SrMn_{6.92}^{57}Fe_{0.08}O_{12}$, $CdMn_{6.96}^{57}Fe_{0.04}O_{12}$ и Pb $Mn_{6.92}^{57}Fe_{0.08}O_{12}$ при T = 300 K.

электронной оболочкой, замещать марганец в практически неискаженных полиэдрах $(Mn^{4+}O_6)$.

A	Парциальный спектр	<i>б</i> , мм/с	⊿ ^{эксп} , мм/с	⊿ ^{теор} , мм/с	<i>I</i> , %
Sr	$Fe(1) \rightarrow Mn2$	0.38(1)	0.57(1)	0.620	68(1)
51	$Fe(2) \rightarrow Mn3$	0.38(1)	0.18(1)	0.121	32(1)
Cd	$Fe(1) \rightarrow Mn2$	0.37(1)	0.66(1)	0.636	75(1)
	$Fe(2) \rightarrow Mn3$	0.38(1)	0.10(1)	0.166	25(1)
Pb	$Fe(1) \rightarrow Mn2$	0.39(1)	0.61(1)	0.587	63(1)
	$Fe(2) \rightarrow Mn3$	0.39(1)	0.26(1)	0.118	37(1)

Таблица 3. Сверхтонкие параметры мессбауэровских манганитов $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Sr, Cd, Pb; x = 0.04, 0.08) при T = 300 K.

Согласно представленным выше экспериментальным данным, в области температур зарядового упорядочения ($T < T_{CO}$) зондовые катионы Fe³⁺ локализуются в двух кристаллографических позициях двойных манганитов, соответствующих октаэдрически координированным катионам Mn³⁺ и Mn⁴⁺. Этот результат не согласуется с данными ранее проведенных мессбауэровских исследований зондовых ядер ⁵⁷Fe в перовскитоподобных манганитах $R_{1-x}A_x$ MnO₃ (R = P3Э; A = Ca, Sr) [4], согласно которым в области зарядового упорядочения Mn³⁺/Mn⁴⁺ ($T < T_{CO}$) все зондовые катионы железа находятся в одинаковом кристаллографическом окружении. Подобное расхождение может служить указанием на различный характер зарядового упорядочения катионов марганца в манганитах AMn_7O_{12} (A = Sr, Cd, Pb) и $R_{1-x}A_x$ MnO₃ (R = P3Э; A = Ca, Sr).

При повышении температуры до $T \approx T_{CO}$ в мессбауэровских спектрах всех манганитов появляется новая компонента в виде неразрешенного дублета с квадрупольным расщеплением (Δ), близким к парциальному спектру Fe(2) при T = 300 K (табл. 3). Относительный вклад данного парциального спектра постепенно растет по мере увеличения температуры (рис. 3). Расчеты параметров тензора ГЭП с использованием структурных параметров для кубических фаз (пр. гр. $Im\overline{3}$) трех манганитов A= Sr, Cd, Pb показали, что рассматриваемая компонента (Fe^{ky6}) может быть отнесена к зондовым катионам Fe³⁺, замещающим марганец в симметричных октаэдрических полиэдрах. Наличие при высоких температурах ($T >> T_{CO}$) единственного парциального спектра Fe^{ky6} (рис. 3) согласуется с кристаллографическими данными, согласно которым манганиты AMn_7O_{12} , благодаря быстрому электронному обмену между октаэдрически координированными катионами $3Mn^{3+} \leftrightarrow 1Mn^{4+}$, приобретают кубическую структуру с единственным типом октаэдрических позиций $Mn^{3.25+}O_6$.

Таким образом, на основании мессбауэровских данных можно сделать вывод о том, что высокотемпературный фазовый переход $R\overline{3} \rightarrow Im\overline{3}$ протекает с образованием и постепенным ростом зародышей кубической фазы при непрерывном уменьшении доли ромбоэдрической фазы этого оксида. Установлено, что увеличение размера катиона A^{2+} в системе AMn_7O_{12} приводит к уменьшению значения температуры

Рис. 3. Изменение мессбауэровских спектров манганита $\mathrm{SrMn_{6.92}}^{57}\mathrm{Fe_{0.08}O_{12}}$ в области температур структурного фазового перехода $R\overline{3} \leftrightarrow Im\overline{3}$ (а); температурные зависимости относительных интенсивностей парциальных спектров $\mathrm{Fe}^{\mathrm{pom6.}}$ и $\mathrm{Fe}^{\mathrm{ky6.}}$, соответствующих ромбоэдрической ($R\overline{3}$) и кубической ($Im\overline{3}$) фазам манганита $\mathrm{SrMn_{6.92}}^{57}\mathrm{Fe_{0.08}O_{12}}$ (б).

*T*_{CO} и расширению температурного интервала сосуществования ромбоэдрической и кубической структурных форм манганитов.

В разделе 3.2. представлены результаты анализа мессбауэровских спектров манганитов $AMn_{6.92}^{57}Fe_{0.08}O_{12}$ (A = Ca, Sr) и $CdMn_{6.96}^{57}Fe_{0.04}O_{12}$ в области температур, где на диффрактораммах синхротронного излучения нелегированных железом образцов AMn_7O_{12} (A = Ca, Sr, Cd) наблюдаются сверхструктурные рефлексы, которые могут свидетельствовать о появлении структурной модуляции. Проведен количественный анализ параметров тензора ГЭП для позиций $Mn^{3+}(9e)$ и $Mn^{4+}(3b)$ с учетом ранее установленной модулированной кристаллической структуры манганита CaMn₇O₁₂ [3].

Измерение температурных зависимостей мессбауэровских спектров манганитов A = Ca, Sr, Cd в области $T_{\text{N}} < T < T_{\text{CO}}$ не выявило каких-либо существенных изменений в их профиле, который описывается в виде суперпозиции двух квадрупольных дублетов Fe(1) и Fe(2) (рис. 2). Температурные зависимости сдвигов $\delta_1(T)$ и $\delta_2(T)$ также не претерпевают резких изменений и хорошо описываются в рамках высокотемпературного дебаевского приближения. В то же время, зависимости квадрупольных расщеплений $\Delta_1(T)$ и $\Delta_2(T)$ демонстрируют необычно резкое увеличение с уменьшением температуры (рис. 4), что нехарактерно для высокоспиновых катионов Fe³⁺, для которых основной вклад в ГЭП в основном обусловлен искажением их ближайшего кристаллического окружения. Предполагается, что подобное поведение квадрупольных расщеплений связано с проявлением структурной модуляции манганитов AMn_7O_{12} (A =

Ca, Sr, Cd) в области температур орбитального упорядочения ($T < T_{OO}$). Нами были проведены модельные расчеты параметров ГЭП с использованием известных из литературных данных [3] для модулированной кристаллической структуры CaMn₇O₁₂ при разных температурах.

Полученные для каждой температуры теоретические значения ⊿^{мод} аппроксимировались в виде гармонических функций вида (рис. 5):

 $\Delta^{MOD}(t) = \Delta_0 + A^{(2)} \sin(2\pi t) + B^{(2)} \cos(2\pi t) + A^{(4)} \sin(4\pi t) + B^{(4)} \cos(4\pi t),$ (1) где *t* - координата вдоль вектора распространения структурной модуляции, $A^{(n)}$ и $B^{(n)}$ амплитуды гармоник $\sin(n\pi t)$ и $\cos(n\pi t)$, соответственно, которые далее использовались для построения распределений $p(\Delta^{MOD})$ значений Δ^{MOD} . Сложные профили полученных функций $\Delta^{MOD}(t)$ обусловлены тем, что результирующие значения компонент тензора ГЭП на ядрах мессбауэровских нуклидов ⁵⁷Fe являются суперпозицией парциальных вкладов от отдельных ионов кристаллической решетки, положения которых в манганитах описываются периодическими функциями.

Рассчитанные из распределений средние значения $\langle \Delta^{MOd} \rangle = 1/n \sum \{ p(\Delta_i) \times \Delta_i \}$ хорошо согласуются с экспериментальными значениями Δ_1 и Δ_2 (рис. 4). Поскольку значения $\langle \Delta_i^{MOd} \rangle$ были получены с использованием кристаллографических параметров манганита CaMn₇O₁₂, наблюдаемые нами резкие зависимости $\Delta_1(T)$ и $\Delta_2(T)$ действи-

Рис. 4. Температурные зависимости экспериментальных ($\Delta^{3\kappa cn}$) и теоретических величин квадрупольных расщеплений в двойных манганитах $AMn_{7-x}Fe_xO_{12}$ (A = Ca, Sr, Cd).

Рис. 5. Изменение теоретических значений квадрупольных расщеплений Δ_1^{MOZ} и Δ_2^{MOZ} в манганите CaMn_{6.96}⁵⁷Fe_{0.04}O₁₂ от координаты (*t*) вдоль вектора распространения модуляции *q*_c при различных температурах.

тельно могут быть связаны со структурной модуляцией в этом оксиде. Таким образом, проявляющиеся в мессбауэровских спектрах исследуемых манганитов схожие зависмости $\Delta_1(T)$ и $\Delta_2(T)$ могут служить косвенным указанием на единый для всего семейства AMn_7O_{12} механизм проявления орбитального упорядочения - *структурной модуляции*, которая в ряде случаев (A = Sr, Cd) не может быть зафиксирована "традиционными" структурными методами.

В разделе 3.3. приводятся результаты мессбауэровских исследований электрических сверхтонких взаимодействий зондовых ядер ⁵⁷Fe в манганитах TlMn_{0.95}⁵⁷Fe_{0.05}O₃ и BiMn_{0.96}⁵⁷Fe_{0.04}O₃, содержащих моновалентные ян-теллеровские катионы Mn³⁺, находящиеся в орбитально-упорядоченном состоянии ($T < T_{OO}$). Для манганита висмута измерения проводились в широком диапазоне температур, включающем точку ($T \approx$ 350 K) структурного фазового перехода, связанного с орбитальным разупорядочением в подрешетке марганца.

Немодельная расшифровка сложного спектра манганита TlMn_{0.95}⁵⁷Fe_{0.05}O₃ в виде восстановленной функции распределения $p(\Delta)$ квадрупольных расщеплений (рис. 6а) показала наличие в спектре двух групп квадрупольных дублетов Fe(2,3) и Fe(1,4) с близкими химическими сдвигами (δ_i) и существенно различающимися расщеплениями $\Delta_{2,3} > \Delta_{1,4}$ (табл. 4). На основании этих данных была проведена расшифровка спектра в виде суперпозиции четырех квадрупольных дублетов Fe(i) (рис. 6б). Полуэмпирические расчеты параметров тензора ГЭП для четырех позиций катионов Mn³⁺(i) в структуре TlMnO₃ позволили провести кристаллохимическую идентификацию парциальных спектров Fe(i) (табл. 4). Некоторое расхождение экспериментальных ($\Delta^{3ксп}$) и теоретических (Δ^{Teop}) значений квадрупольных расщеплений, повидимому, связано со структурной релаксацией ближайшего кислородного окружения примесных катионов Fe³⁺(i) при замещении ими ян-теллеровских катионов Mn³⁺(i).

Рис. 6. Анализ мессбауэровского спектра манганита $\text{TlMn}_{0.95}^{57}\text{Fe}_{0.05}\text{O}_3$ при T = 300 К: восстановленная функция распределения $p(\Delta)$ квадрупольных расщеплений (Δ) (a); суперпозиция четырёх квадрупольных дублетов (б).

Рис. 7. Мессбауэровские спектры манганита $BiMn_{0.96}$ ⁵⁷Fe_{0.04}O₃, измеренные в режиме "нагревания" вблизи температуры орбитального упорядочения T_{OO} .

Более низкая симметрия фазы TlMnO₃ (*P*1) по сравнению с орторомбическими манганитами *R*MnO₃ (*Pbnm*) проявляется в мессбауэровских спектрах введенных в их структуру зондовых атомов ⁵⁷Fe в виде четырех квадрупольных дублетов (рис. 6б). В то же время, для орторомбических манганитов, например, YbMn_{0.99}⁵⁷Fe_{0.01}O₃ [5], всегда наблюдается лишь один парциальный спектр. В настоящей работе показано, что подобные кристаллохимические различия могут быть связаны с особенностями электронного строения катионов $Tl^{3+}(4f^{4}5d^{10}6s^{0})$, для которых характерно образование направленных ковалентных связей Tl-O, что приводит к значительному искажению полиэдров (TlO₁₂) и, как следствие, к изменению пространственной топологии подрешетки марганца.

Несмотря на наличие в структуре BiMnO₃ двух позиций катионов Mn³⁺, мессбауэровские спектры допированного образца BiMn_{0.96}⁵⁷Fe_{0.04}O₃, измеренные ниже температуры структурного фазового перехода $T_{OO} \approx 413$ K, могут быть представлены в виде единственного уширенного квадрупольного дублета (рис. 7). При переходе в область температур с полностью орбитальноразупорядоченным состоянием катионов Mn³⁺ ($T > T_{OO}$) в спектрах по-прежнему присутствует

единственный дублет (рис. 7), но с существенно меньшим квадрупольным расщеплением (табл. 5).

Парциальный спектр	<i>δ</i> , мм/с	⊿ ^{эксп} , мм/с	Δ^{Teop} , MM/C	I, %
$Fe(1) \rightarrow Mn1$	0.37(1)	1.54(1)	1.070	25(1)
$Fe(2) \rightarrow Mn2$	0.37(1)	0.99(1)	0.833	40(1)
$Fe(3) \rightarrow Mn3$	0.36(1)	0.73(1)	0.809	14(1)
$Fe(4) \rightarrow Mn4$	0.37(1)	1.28(1)	1.017	21(1)

Таблица 4. Сверхтонкие параметры MC образца $TlMn_{0.95}^{57}Fe_{0.05}O_3$ при T = 300 K.

Таблица 5. Сверхтонкие параметры МС манганита BiMn_{0.96}⁵⁷Fe_{0.04}O₃.

<i>T</i> , K	<i>δ</i> , мм/с	⊿ ^{эксп} , мм/с	Δ^{Teop} , MM/C	<i>Г</i> _{1/2} , мм/с	$\alpha_{\rm Bi}, {\rm \AA}^3$
300	0.37	1.18(1)	1.154	0.32(1)	8.5
503	0.25	0.62(1)	0.614	0.28(1)	8.5

Анализ температурной зависимости спектров, измеренных в режимах "охлаждения" (\downarrow) и "нагревания" (\uparrow), показал наличие широких интервалов температур $\Delta T_{(\uparrow)} \approx$ 65 К и $\Delta T_{(\downarrow)} \approx 50$ К, в которых сосуществуют орбитально-разупорядоченная ($T > T_{OO}$) и упорядоченная ($T < T_{OO}$) фазы BiMn_{0.96}⁵⁷Fe_{0.04}O₃. При этом наблюдается заметный гистерезис ($\Delta T_{\rm rист} \sim 10$ K) в температурных зависимостях парциальных вкладов двух фаз, что характерно для фазовых переходов первого рода.

С использованием структурных данных для BiMnO₃, были проведены полуэмпирические расчеты параметров тензора ГЭП для различных позиций катионов марганца выше и ниже точки структурного фазового перехода (T_{OO}). Показано, что для достижения согласия с экспериментальными значениями квадрупольных расщеплений (табл. 5), помимо монопольного вклада (\tilde{V}^{mon}), значения которого зависят от симметрии кристаллической решетки, необходимо также учитывать дипольные вклады (\tilde{V}^{dip}), параметрически зависящие от дипольных моментов ионов (p):

$$V_{ij}^{\text{mon}} = \sum_{k} Z_{k} (3x_{ik}x_{jk} - \delta_{ij}r_{k}^{2})/r_{k}^{5}$$

$$V_{ij}^{\text{dip}} = \sum_{k} -3[(x_{ik}p_{ik})(5x_{ik}x_{jk} - \delta_{ij}r_{k}^{2})/r_{k}^{7} - (x_{ik}p_{ik} + x_{jk}p_{jk})/r_{k}^{5}],$$
(2)

где x_{ik} (x_{jk}) и r_k - декартовы координаты и радиус-вектор k-го иона, соответственно. Предполагалось, что проекция дипольного момента (p_{ik}) k-го иона прямопропорциональна напряженности действующего на него электрического поля (E), создаваемого окружающими ионами:

$$p_{ik} = \sum_{i} \alpha_{ij}^{k} E_{j}^{k} \quad , \tag{3}$$

где α_{ii}^{k} - компоненты тензора поляризуемости k-го иона, которые выступали в качестве варьируемых параметров при итерационной процедуре согласования расчетных данных с экспериментальными. Применение этой схемы расчета для BiMn_{0.96}⁵⁷Fe_{0.04}O₃ показало, что наилучшее согласие с экспериментом можно достичь только при высоких значениях поляризуемости катионов ${\rm Bi}^{3+}$ ($\alpha_{\rm Bi} \approx 8.5 {\rm ~\AA}^3$), которые остаются практически неизменными по обе стороны от точки структурного фазового перехода. Предполагается, что высокое значение α_{Bi} связано с проявлением стереохимической активности неподеленной $6sp^n$ -электронной пары катионов Bi^{3+} , которая может быть одной из основных причин низкой симметрии рассматриваемого манганита (два типа позиций Mn³⁺). Примечательно, что проведение аналогичных расчетов ГЭП в случае двойного манганита PbMn₇O₁₂, содержащего катионы Pb²⁺ с неподеленной $6s^2$ -электронной парой, показало отсутствие дипольного момента катионов свинца ($\alpha_{Pb} \approx 0$). Данный результат свидетельствует о полном подавлении стереохимической активности неподеленной пары свинца, имеющей в основном s-характер. Независимым подтверждением данного вывода может служить изменение симметрии локального кислородного окружения катионов Pb^{2+} и Bi^{3+} в рассматриваемых манганитах (рис. 8).

Таким образом, представленные результаты показывают, что параметры электрических сверхтонких взаимодействий зондовых атомов ⁵⁷Fe оказываются "чувствительными" не только к незначительным структурным изменениям, связанным с проявлением в манганитах $AMnO_3$ кооперативного эффекта Яна-Теллера, но и также к специфике электронного строения катионов A-подрешетки (Tl^{3+} , Bi^{3+}). Во многих случаях именно эти катионы могут оказывать решающее влияние на характер орбитального упорядочения и, как следствие, связанные с ним физические свойства манганитов.

Рис. 8. Локальное кристаллографическое окружение катионов A (Bi, Tl, Pb) в манганитах BiMnO₃, TlMnO₃ и PbMn₇O₁₂. Группы коротких, средних и длинных связей A-O обозначены красным, зелёным и синим соответственно. Сегмент шара синего цвета для BiMnO₃ схематично изображает стереохимически активную неподелённую электронную пару катиона Bi³⁺.

Глава IV. Магнитные сверхтонкие взаимодействия зондовых ядер ⁵⁷Fe в манганитах $AMnO_3$ (A = Tl, Bi) и AMn_7O_{12} (A = Ca, Sr, Cd)

В разделе 4.1. приведены результаты измерений мессбауэровских спектров манганитов $BiMn_{0.96}^{57}Fe_{0.04}O_3$ и $TlMn_{0.95}^{57}Fe_{0.05}O_3$ ниже температур ферромагнитного (T_C) упорядочений, соответственно (табл. 1).

Сложная структура мессбауэровских спектров манганитов $BiMn_{0.96}^{57}Fe_{0.04}O_3$ при $T \ll T_C$ (рис. 9) не описывается в виде суперпозиции двух зеемановских секстетов, которые можно было бы отнести к катионам Fe³⁺, замещающим марганец в близких

Рис. 9. Мессбауэровский спектр манганита Ві $Mn_{0.96}^{57}$ Fe_{0.04}O₃ при *T* << *T*_C.

по своим кристаллографическим параметрам позициях 4*e* и 4*d*. Для объяснения полученных спектров были привлечены данные о топологии орбитального и связанного с ним спинового упорядочений ян-теллеровских катионов Mn^{3+} в недопированном железом манганите BiMnO₃ [6]. Проведенный нами анализ показал, что в области магнитного упорядочения примесные катионы Fe³⁺(1), локализованные в позициях 4*e* с одинаковым кристаллическим и магнитным окружением, могут различаться взаимным расположением наполовину заполненных и пустых *d*-орбиталей окружающих их катионов Mn^{3+} (рис. 10). В соответствии с правилами Гуденафа-Канамори-Андерсена, часть катионов железа $Fe^{3+}(1)_A$, замещающих марганец в позициях 4e, будет взаимодействовать со своим магнитным окружением посредством пяти ферромагнитных связей и одной *фрустрированной* связи, магнитный обмен через которую, по правилам ГКА, должен быть антиферромагнитным. Вторая же часть катионов железа $Fe^{3+}(1)_B$ связывается со своим окружением тремя сильными ферромагнитными и тремя фрустрированными связями (рис. 10). Все катионы железа Fe(2), находящиеся в кристаллографических позициях 4d, будут взаимодействовать с магнитными соседями посредством четырех сильных ферромагнитных и двух ослабленных фрустрированных связей (рис. 10). Таким образом, мессбауэровский спектр $BiMn_{0.96}^{57}Fe_{0.04}O_3$ представляет собой суперпозицию трех зеемановских структур (рис. 9), соответствующих примесным катионам железа с различным характером магнитного взаимодействия с магнитной подрешеткой марганца.

Рис. 10. Схематичное изображение локального магнитного окружения зондовых катионов 57 Fe $^{3+}$ в структуре манганита BiMnO₃.

Учитывая, что в позициях с фрустрированными обменными связями магнитные моменты катионов железа могут претерпевать динамические флуктуации, для математического описания экспериментальных спектров использовалась стохастическая "двухуровневая модель" [7], в которой, помимо статических сверхтонких параметров (δ , ε , $H_{\rm hf}$) парциальных спектров, использовались заселенности (n_1 , n_2) основного "1" и возбужденного "2" состояний, а также частоты релаксации Ω_{12} ($1 \rightarrow 2$) и Ω_{21} ($2 \rightarrow 1$) между этими состояниями. В рамках данной модели удалось хорошо описать все спектры BiMn_{0.96}⁵⁷Fe_{0.04}O₃, измеренные в магнитоупорядоченной области температур. Анализ полученных релаксационных параметров (табл. 6) показал, что при увеличении в комплексах {Fe(OMn)₆} числа фрустрированных связей (Fe-O-Mn)_{fr} происходит выравнивание относительных заселенностей $n_1/n_2 = \Omega_{21}/\Omega_{12}$ и уменьшение средних значений частот релаксации $\langle \Omega \rangle = \Omega_{12}\Omega_{21}/(\Omega_{12} + \Omega_{21})$. Уменьшение частот $\langle \Omega \rangle$ может быть связано с уменьшением числа "каналов", через которые осуществляется спин-спиновая релаксация, являющаяся при низких температурах основным механизмом обмена энергией между магнитными моментами примесных катионов Fe³⁺ и подрешеткой марганца. Значение частоты релаксации спинов катионов Fe³⁺ ($<\Omega>\approx 360$ МГц), образующих три фрустрированные связи, сопоставимое по порядку величины с частотой ларморовой прецессии $\Omega_L \approx 74.5$ МГц ядерных спинов ⁵⁷Fe вокруг направления сверхтонкого магнитного поля $H_{\rm hf} = 540$ кЭ, может служить объяснением необычного профиля соответствующего этим катионам парциального спектра Fe(1)_в (рис. 10).

Парциальный спектр	<i>б</i> , мм/с	<i>е</i> , мм/с	<i>Н_{hf}</i> , кЭ	<Ω>, МГц	Ω_{21}/Ω_{12}	<i>I</i> ,%
$Fe(1)_A \rightarrow Mn1$	0.53(1)	-0.56(3)	538(3)	780(170)	0.030(2)	27(2)
$Fe(1)_B \rightarrow Mn1$	0.53(1)	-0.56(3)	538(3)	360(20)	0.215(1)	27(2)
$Fe(2) \rightarrow Mn2$	0.53(1)	-0.65(3)	538(3)	710(10)	0.059(1)	47(2)

Таблица 6. Сверхтонкие параметры MC манганита $BiMn_{0.96}^{57}Fe_{0.04}O_3$ при T = 14 K.

Использование описанной выше модели позволило объяснить сложный мессбауэровский спектр манганита TIMn_{0.95}⁵⁷Fe_{0.05}O₃ при $T \ll T_C$, представляющий собой суперпозицию четырех релаксационных зеемановских секстетов (рис. 11). Анализ магнитной и орбитальной структуры этого соединения показал, что наблюдаемые парциальные спектры соответствуют катионам Fe³⁺, замещающим марганец в четырех кристаллографических позициях Mn³⁺{1*d*, 1*e*, 1*b*,1*g*} триклинной ячейки манганита. Как и в случае манганита висмута, релаксационный профиль парциальных спектров связан с особенностями $d_x^2 - y^2/d_z^2$ -орбитальной и магнитной структуры TlMnO₃, в которой примесные катионы Fe³⁺ занимают позиции с двумя фрустрированными и четырьмя прочными антиферромагнитными связями (Fe-O-Mn). Показано, что различие релаксационных параметров парциальных спектров связано со степенью искажения октаэдрических полиэдров Mn*i*O₆ структуры TlMnO₃.

Рис. 11. Мессбауэровский спектр манганита TlMn_{0.95}⁵⁷Fe_{0.05}O₃ при $T \ll T_{\rm C}$.

В разделе 4.2. приводятся результаты мессбауэровского исследования двойных манганитов $AMn_{6.96}^{57}Fe_{0.04}O_{12}$ (A = Ca, Cd) и $SrMn_{6.92}$ ⁵⁷ $Fe_{0.02}O_{12}$ в магнитоупорядоченной области температур. Ранее для манганита CaMn₇O₁₂ было показано, что при *T* < *T*_N, наряду с структурной модуляцией (см. § 3.2), возникает несоразмерная геликоидальная магнитная структура с волновым вектором $q_m = (0, 0, 1.037)$, направленным вдоль гексагональной оси кристалла [3]. Предполагается, что кристаллическая и магнитная модуляции связаны со сложной орбитальной структурой ян-теллеровских центров Mn(1) и Mn(2), образующих квадратную и октаэдрическую подрешетки манганита, соответственно [3].

В отличие от $AMn_{1-x}^{57}Fe_xO_3$ (A = Bi, Tl), мессбауэровские спектры всех трех двойных манганитов, имеющие очень схожие профили (рис. 12), не могут быть представлены в виде суперпозиции конечного числа зеемановских компонент, которые можно было бы соотнести с дискретными неэквивалентными кристаллическими или магнитными позициями зондовых катионов железа. Сильное уширение и ассимметрия линий наблюдаемой магнитной структуры спектров указывают на непрерывное распределение статических или динамических сверхтонких параметров ядер ⁵⁷Fe. Анализ спектров проводился с учетом модуляции длин связей (Mn-O_i) в искаженных октаэдрических полиэдрах (Mn³⁺O₆), приводящей к перераспределению плотности 3*d*-электронов катионов Mn³⁺, заселяющих *e*_g-орбиталь основного состояния:

$$\Psi(\theta) = \cos(\theta/2) \left| z^2 - r^2 \right\rangle + \sin(\theta/2) \left| x^2 - y^2 \right\rangle \quad , \tag{4}$$

где величина θ , определяющая степень смешивания $|z^2 - r^2 > u |x^2 - y^2 > орбиталей, зави$ $сит от степени искажения полиэдров (MnO₆): tan(<math>\theta$) = $\sqrt{3}(x-y)/(2z-x-y)$, где x,y,z - длины связей (Mn-O) вдоль соответствующих направлений. Периодическое изменение угла θ вдоль направления распространения магнитной геликоиды (Q || c) вызывает изменение степени гибридизации орбиталей (4) катионов Mn³⁺ и, тем самым, влияет на эффективность их перекрывания с e_g -орбиталями ближайших с марганцем катионов железа. Принимая во внимание данные нашего исследования $AMn_{1-x}^{57}Fe_xO_3$ (A = Bi, Tl) (см. § 3.2), даже незначительное изменение в окружении зондовых катионов Fe³⁺ орбитальной структуры ближайших с ними катионов марганца (рис. 10 - 11) проявляется в мессбауэровских спектрах в виде дискретных релаксационных зеемановских компонент. Предполагается, что в случае манганитов $AMn_{7-x}^{57}Fe_xO_{12}$ с модулированной кристаллической структурой подобный эффект будет проявляться в виде непрерывного распределения таких параметров мессбауэровских спектров, как отношение частот релаксации Ω_{21}/Ω_{12} , зависящее от числа и силы обменных связей Fe-O-Mn.

Нами была реализована модельная расшифровка всех низкотемпературных спектров рассматриваемых двойных манганитов (рис. 12). Модуляция отношения Ω_{21}/Ω_{12} апроксимировалась в виде гармонических функций, схожих с соответствующим выражением (1) для модуляции значений квадрупольного расщепления. Для учета гели-

Рис. 12. Мессбауэровские спектры манганитов $CaMn_{6.96}^{57}Fe_{0.04}O_{12}$, $SrMn_{6.92}^{57}Fe_{0.08}O_{12}$ и $CdMn_{6.96}^{57}Fe_{0.04}O_{12}$ при $T \ll T_N$.

коидальной магнитной структуры было получено выражение квадрупольного смещения *є* компонент зеемановской структуры как функции угла поворота (9) магнитного момента катиона железа в плоскости геликоиды:

$$\varepsilon(\vartheta) = (eQV_{ZZ}\sin^2\Theta)[3\cos^2\vartheta - 1]/8 + eQV_{ZZ}(\sin^2\Theta - 1)/8, \qquad (5)$$

где первое слагаемое описывает изменение квадрупольного смещения при движении вдоль направления распространения геликоиды, а второе слагаемое зависит от угла Θ между направлением главной компоненты V_{ZZ} тензора ГЭП в кристалле и нормалью к плоскости геликоиды ($V_{XX} = V_{YY}$), eQ - квадрупольный момент ядра ⁵⁷Fe. Экспериментальные спектры аппроксимировались в виде суперпозиции большого количества (N) зеемановских секстетов, каждый из которых имеет свой набор параметров $\varepsilon(9_i)$ и $p(9_i)$ ($p \equiv \Omega_{21}/\Omega_{12}$), при этом значения $9_i = n_i \times (\pi/2N)$ ($n_i = 0, 1, ..., N$) равномерно заполняют интервал $0 \le 9 \le \pi/2$ (гармоническое приближение). Учет модуляции динамических (p) и статических (ε) сверхтонких параметров позволил добиться удовлетворительного описания всех экспериментальных спектров (рис. 12). В работе проводится анализ полученных из обработки спектров зависимостей модуляции сверхтонких параметров с привлечением данных о магнитной и кристаллической структуре исследуемых манганитов.

Основные результаты и выводы

1. Впервые синтезированы и охарактеризованы (кристаллическая структура, температуры структурных и магнитных фазовых переходов) новые фазы поликристаллических образцов манганитов TlMnO₃ и AMn_7O_{12} (A = Sr, Cd, Pb). Разработаны методы введения в их структуру мессбауэровских зондовых атомов ⁵⁷Fe.

2. Установлено, что зондовые атомы железа не оказывают существенного влияния на структурные параметры и на значения температур магнитных фазовых переходов (T_N , T_C) исследуемых манганитов. Однако введение атомов железа приводит к существенному понижению значений температур структурных фазовых переходов, связанных с орбитальным (T_{OO}) и зарядовым (T_{CO}) упорядочениями.

3. Впервые для манганитов $AMn_{7-x}{}^{57}Fe_xO_{12}$ (A = Cd, Sr, Pb; x = 0.04, 0.08) показано, что ниже температуры зарядового упорядочения (T_{CO}) зондовые катионы ${}^{57}Fe^{3+}$ занимают в ромбоэдрической структуре ($R\overline{3}$) этих оксидов две кристаллографически неэквивалентные позиции, указывая на образование при $T < T_{CO}$ в октаэдрической подрешетке марганца индивидуальных зарядовых состояний Mn³⁺ и Mn⁴⁺.

4. Установлено, что для манганитов $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Cd, Sr, Pb; x = 0.04, 0.08) в области температуры структурного фазового перехода $R\overline{3} \leftrightarrow Im\overline{3}$ сосуществуют ромбоэдрическая ($R\overline{3}$) и кубическая ($Im\overline{3}$) фазы. Показано, что с увеличением температуры происходит "зарождение" и постепенное увеличение относительного содержания кубической фазы, в которой за счет электронного обмена $Mn^{3+} \leftrightarrow Mn^{4+}$ все позиции в октаэдрической подрешетке становятся эквивалентными.

5. Впервые на основании данных о модулированной кристаллической структуре CaMn₇O₁₂ проведены теоретические расчеты компонент тензора градиента электриче-

ского поля (ГЭП) в позициях Mn^{3+}/Mn^{4+} , которые позволили объяснить наблюдаемые "аномалии" в поведении сверхтонких параметров зондовых атомов ⁵⁷Fe в изоструктурных манганитах $AMn_{7-x}^{57}Fe_xO_{12}$ (A = Ca, Cd, Sr; x = 0.04, 0.08).

6. Показано, что полученное из мессбауэровских спектров $BiMn_{0.96}^{57}Fe_{0.04}O_3$ высокое значение поляризуемости $\alpha_{Bi} = 8.5$ Å³ связано с проявлением стереохимической активности неподеленной $6sp^{n}$ -электронной пары катионов Bi^{3+} . В случае же двойного манганита $PbMn_{6.92}^{57}Fe_{0.08}O_{12}$ расчеты ГЭП на ядрах ⁵⁷Fe показали отсутствие дипольного момента катионов Pb^{2+} ($\alpha_{Pb} \approx 0$), свидетельствуя о полном подавлении стереохимической активности неподеленной пары свинца, имеющей в основном *s*-характер.

7. Показано, что стабилизация зондовых катионов Fe³⁺ в октаэдрической подрешетке манганитов BiMn_{0.96}⁵⁷Fe_{0.04}O₃ и TlMn_{0.95}⁵⁷Fe_{0.05}O₃ сопровождается фрустрацией их магнитных моментов, в результате которой образуются магнитно-неэквивалентные позиции. Полученные результаты согласуются с моделью d_z^2/d_{x-y}^2 -орбитального упорядочения катионов Mn³⁺, объясняющей необычный характер магнитного упорядочения в исследуемом классе манганитов.

8. Показано, что сложная магнитная структура мессбауэровских спектров манганитов $AMn_{6.96}^{57}Fe_{0.04}O_{12}$ (A = Ca, Cd) и $SrMn_{6.92}^{57}Fe_{0.08}O_{12}$ может быть объяснена с привлечением ранее полученных данных для модулированной кристаллической и геликоидальной магнитной структуры $CaMn_7O_{12}$. Схожий для всех двойных манганитов профиль зеемановской структуры спектров зондовых атомов ⁵⁷Fe указывает на общий для них механизм формирования неколлинеарной магнитной структуры, в котором существенную роль играет структурная модуляция обменных связей Mn-O-Mn.

Цитируемая литература

- 1. G. Demazeau. // J. Phys.: Condens. Matter. 2002. v. 14 (44). p. 11031-11035.
- 2. M. E. Matsnev, V. S. Rusakov. // AIP Conf. Proc. 2012. v. 1489. p. 178-185.
- 3. N.J. Perks, R.D. Johnson et al. // Nat. Commun. 2012. v. 3. p. 1277.
- 4. W. Sławiński, R. Przeniosło et al. // J. Phys.: Cond. Mat. 2010. v. 22. p. 186001.
- 5. G.A. Stewart, H.A. Salama et al. // Hyperfine Interact. 2015. v. 230. p. 195.
- 6. L.E. Gonchar and A.E. Nikiforov // Phys. Rev. B. 2013. v. 88. p. 094401.
- 7. M. Blume and J. A. Tjon // Phys. Rev. 1968. v. 165. p. 446.

Основные результаты диссертации изложены в следующих работах:

1. Glazkova I.S., Belik A.A., Sobolev A.V., Presniakov I.A. // 57 Fe Mössbauer investigation of multiferroics BiMn_{0.96} 57 Fe_{0.04}O₃ and BiMn_{0.7}Fe_{0.3}O₃ // AIP Conference Proceedings. 2014. V. 1622. P. 109-113.

2. Yi Wei, Kumagai Y., Spaldin N.A., Matsushita Y., Sato A., Presniakov I.A., Sobolev A.V., Glazkova I.S., and Belik A.A. // Perovskite-structure TlMnO₃: a new manganite with new properties // Inorganic Chemistry. 2014. V. 53. P. 9800-9808.

3. Glazkova Y.S., Terada N., Matsushita Y., Katsuya Y., Tanaka M., Sobolev A.V, Presniakov I.A., Belik A.A. // High-pressure synthesis, crystal structures, and properties of

CdMn₇O₁₂ and SrMn₇O₁₂ perovskites // Inorganic Chemistry. 2015. V. 54. N_{2} 18. P. 9081-9091.

4. Глазкова Я.С., Белик А.А., Соболев А.В., Пресняков И.А. // Исследование особенностей локальной кристаллографической структуры мультиферроика BiMnO₃ методами зондовой мессбауэровской спектроскопии на ядрах ⁵⁷Fe // Неорганические материалы. 2016. Т. 52. № 5. С. 546-550.

5. Belik A.A., Glazkova Y.S., Katsuya Y., Tanaka M., Sobolev A.V., Presniakov I.A. // Low-temperature structural modulations in $CdMn_7O_{12}$, $CaMn_7O_{12}$, $SrMn_7O_{12}$, and PbMn₇O₁₂ perovskites studied by synchrotron X-ray powder diffraction and Mossbauer spectroscopy // Journal of Physical Chemistry C. 2016. V. 120. No 15. P. 8278-8288.

6. Terada N., Glazkova Y.S., Belik A.A. // Differentiation between ferroelectricity and thermally stimulated current in pyrocurrent measurements of multiferroic MMn_7O_{12} (M= Ca, Sr, Cd, Pb) // Physical Review B. 2016. V. 93. P. 155127-1-6.

7. Belik A.A., Glazkova Y.S., Terada N., Matsushita Y., Sobolev A.V., Presniakov I.A., Tsujii N., Nimori S., Takehana K., Imanaka Y. // Spin-driven multiferroic properties of PbMn₇O₁₂ perovskite // Inorganic Chemistry. 2016. V. 55. № 12. P. 6169-6177.

8. Глазкова Я.С. // Мессбауэровская диагностика ядер зондовых атомов ⁵⁷Fe мультиферроика BiMnO₃ // Тезисы XXI международной конференции студентов, аспирантов и молодых учёных "Ломоносов", Москва, 2014, с. 17.

9. Glazkova I.S., Belik A.A., Sobolev A.V., Presniakov I.A. // ⁵⁷Fe Mössbauer investigation of multiferroics $BiMn_{0.96}^{57}Fe_{0.04}O_3$ and $BiMn_{0.7}Fe_{0.3}O_3$ // International conference Mössbauer Spectroscopy in Materials Science - Book of abstracts, Hlohovec, Czech Republic, 2014, p. 80.

10. Glazkova I.S., Belik A.A., Sobolev A.V., Presnyakov I.A. // ⁵⁷Fe probe Mossbauer investigation of BiMnO₃ multiferroic // Moscow International Symposium on Magnetism - Book of abstracts, Moscow, Russia, 2014, p. 258.

11. Глазкова Я.С., Белик А.А., Соболев А.В., Пресняков И.А. // Зондовая мессбауэровская спектроскопия перовскитоподобных манганитов // Сборник материалов XIII международной конференции "Мессбауэровская спектроскопия и её применения", Суздаль, 2014, с. 26.

12. Глазкова Я.С., Белик А.А., Соболев А.В., Пресняков И.А., Русаков В.С. // Зондовая мессбауэровская спектроскопия на ядрах ⁵⁷Fe как инструмент для исследования особенностей локальных кристаллографической и магнитной структур манганитов $AMnO_3$ ($A = Bi^{3+}$, Tl^{3+}) // Тезисы XIII конференции молодых учёных "Актуальные проблемы неорганической химии: перспективные магнитные и электропроводящие материалы", Звенигород, 2014, с. 51.

13. Глазкова Я.С. // Зондовая мессбауэровская диагностика манганита TlMnO₃ // Тезисы XXII международной конференции студентов, аспирантов и молодых учёных "Ломоносов", Москва, 2015, с. 15.

14. Glazkova Ia.S., Belik A.A., Sobolev A.V., Presniakov I.A. // ⁵⁷Fe probe Mössbauer studies of perovskite-like AMnO₃ manganites ($A = Bi^{3+}$, Tl^{3+}) // International Conference on the Applications of the Mossbauer Effect - Book of abstracts, Hamburg, Germany, 2015, p. 134.

15. Глазкова Я.С., Белик А.А., Соболев А.В., Пресняков И.А. // Зондовая мессбауэровская диагностика двойных манганитов AMn₇O₁₂ (A = Sr, Cd, Pb) // Тезисы XIV конференции молодых учёных "Актуальные проблемы неорганической химии: Перспективные методы синтеза веществ и материалов", Звенигород, 2015, с. 62.

16. Glazkova I.S., Belik A.A., Sobolev A.V., Presniakov I.A. // ⁵⁷Fe Mössbauer study of double manganites AMn_7O_{12} (A = Sr, Cd, Pb) // 20th International Conference on Solid Compounds of Transition Elements - Book of abstracts, Zaragoza, Spain, p. 72-73.

17. Glazkova I.S., Belik A.A., Sobolev A.V., Presniakov I.A. // Mössbauer investigation of low-temperature structural modulations in $CaMn_7O_{12}$, $SrMn_7O_{12}$ and $CdMn_7O_{12}$ perovskites // 20th International Conference on Solid Compounds of Transition Elements - Book of abstracts, Zaragoza, Spain, p. 242.

18. Я.С. Глазкова, А.А. Белик, А.В. Соболев, И.А. Пресняков // Мессбауэровское исследование структурных модуляций в манганитах AMn_7O_{12} (A = Ca, Sr, Cd, Pb) // Сборник материалов XIV международной конференции "Мессбауэровская спектроскопия и её применения", Казань, 2016, с. 45.

19. Я.С. Глазкова, А.А. Белик, А.В. Соболев, И.А. Пресняков // Мессбауэровское исследование низкотемпературных структурных модуляций в двойных манганитах AMn_7O_{12} (A = Ca, Sr, Cd, Pb) // Тезисы XV конференции молодых учёных "Актуальные проблемы неорганической химии: современные материалы для фотоники и оптоэлектроники". Звенигород, 2016, с. 43–44.

* * *

Автор выражает глубокую благодарность научному руководителю к.х.н. А. В. Соболеву за воспитание и постоянную поддержку. Автор искренне признательна научному руководителю к.х.н. А. А. Белику за плодотворное сотрудничество и бесценный опыт, полученный при выполнении работы в Национальном Институте Наук о Материалах (NIMS, Цукуба, Япония). Автор выражает благодарность всем сотрудникам лаборатории "Ядерно-химического материаловедения" кафедры радиохимии химического факультета МГУ за сделанные ими конструктивные замечания. Автор благодарит проф. В. С. Русакова за измерение мессбауэровских спектров при гелиевых температурах. Особую благодарность автор выражает д.ф.-м.н. И. А. Преснякову за предложенную тему исследований, неоценимую помощь в критическом анализе полученных результатов и поддержку на всем протяжении выполнения работы.