Программа утверждена на заседании Ученого Совета факультета наук о материалах МГУ имени М.В.Ломоносова Протокол № 195 от 07 июля 2017 г.

Рабочая программа дисциплины (модуля)

1. Наименование дисциплины (модуля): **Методы колебательной спектроскопии для исследования функциональных материалов.** Краткая аннотация: Спецкурс рассматривает подходы к исследованию функциональных материалов при помощи методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. В программу курса входит рассмотрение физических принципов

возникновения колебательных спектров в молекулах и материалах, устройства современных приборов для регистрации колебательных спектров. Рассматриваются экспериментальные подходы к изучению основных типов функциональных материалов методами инфракрасной спектроскопии и спектроскопии комбинационного рассеяния.

- спектроскопии и спектроскопии комоинационного рассеяния.
- 2. Уровень высшего образования подготовка научно-педагогических кадров в аспирантуре
- 3. Направление подготовки: 04.06.01 Химические науки. Направленность (профиль) Неорганическая химия, Химия твердого тела
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок 1 «Дисциплины (модули)».
- 5. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции)	Планируемые результаты обучения по дисциплине (модулю)		
УК-1	31 (VK-1)		
способность к критическому анализу и оценке современных научных	Знать: методы критического анализа и оценки современных научных		
достижений, генерированию новых идей при решении	достижений, а также методы генерирования новых идей при		
исследовательских и практических задач, в том числе в	решении исследовательских и практических задач, в том числе в		
междисциплинарных областях;	междисциплинарных областях		
ОПК-1	У1 (ОПК-1)		
способность самостоятельно осуществлять научно-	Уметь выбирать и применять в профессиональной деятельности		
исследовательскую деятельность в соответствующей	экспериментальные подходы и методы в колебательной		
профессиональной области с использованием современных методов	спектросокпии		
исследования и информационно- коммуникационных технологий			
ПК-1	31 (ПK-1)		
Способность к самостоятельному проведению научно-	Знать современные подходы, применяемые в неорганической химии,		

исследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию	при исследовании веществ и материалов методами колебательной спектроскопии
диссертаций на соискание ученой степени кандидата наук по	У1 (ПК-1)
направленности (научной специальности) 02.00.01 Неорганическая	Уметь использовать современные методы колебательной
КИМИХ	спектроскопии при решении практических задач в области
	неорганической химии
ПК-16	У1 (ПК-16)
способность к самостоятельному проведению научно-	Уметь использовать данные колебательной спектроскопии для
исследовательской работы и получению научных результатов,	получения информации о составе, структуре и свойствах твердых
удовлетворяющих установленным требованиям к содержанию	тел.
диссертаций на соискание ученой степени кандидата наук по	
направленности (научной специальности) 02.00.21 Химия твердого	
тела	

- 6. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся: Объем дисциплины (модуля) составляет 3 зачетные единицы, всего 108 часов, из которых 48 часов составляет контактная работа аспиранта с преподавателем (20 часов занятия лекционного типа, 20 часов занятия семинарского типа, 8 часов мероприятия текущего контроля успеваемости и промежуточной аттестации), 60 часов составляет самостоятельная работа учащегося.
- 7. Входные требования для освоения дисциплины (модуля), предварительные условия. В специалитете или бакалавриате и магистратуре должны быть освоены общие курсы: «Математический анализ», «Аналитическая геометрия», «Линейная алгебра», «Оптика», «Квантовая физика», «Неорганическая химия», «Органическая химия», «Аналитическая химия», «Физическая химия», «Кристаллохимия», и спецкурсы, посвященные оптическим методам анализа.
- 8. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содержание	Всего	В том числе	
разделов и тем дисциплины (модуля),	(часы)		
форма промежуточной аттестации по			
дисциплине (модулю)			
		Контактная работа (работа во взаимодействии с	Самостоятельная работа
		преподавателем), часы	обучающегося, часы
		из них	из них

		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п.	Всего
Тема 1. Введение. Инфракрасная спектроскопия поглощения и спектроскопия комбинационного рассеяния как методы исследования материалов: возможности и ограничения методов. Причины возникновения колебательных спектров.	8	2	2				4	4		4
Тема 2. Точечные группы симметрии. Матричные представления операций симметрии. Использование математического аппарата теории групп для предсказания и анализа колебательных спектров молекул и ионов.	16	4	4				8	8		8
Тема 3. Квантово-механическая модель молекулы. Адиабатическое приближение. Уравнение Шрёдингера и симметрия молекул. Нормальные координаты и нормальные колебания.	16	4	4				8	8		8
Тема 4. Использование факторгруппового анализа для интерпретации колебательных спектров кристаллов. Поляризованные спектры. Фононы в колебательных спектрах. Резонансное рамановское рассеяние.	16	4	4				8	8		8

Тема 5 Симметрия молекул и кристаллов и экспериментальные данные инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. Отнесение полос в реальных спектрах материалов.	16	4	4			8	8		8
Тема 6. Устройство приборов для регистрации инфракрасных спектров и спектров комбинационного рассеяния для характеризации веществ и материалов.	8	2	2			4	4		4
Тема 7. Использование колебательной спектроскопии для анализа различных классов функциональных материалов. Подготовка и защита реферата	12 12	4	4	2		8	4	10	4
Промежуточная аттестация зачет	4				4	4		10	10
Итого						54			54

8. Образовательные технологии

Проводятся традиционные лекции с использованием мультимедийных презентаций; интерактивные лекции, в ходе которых аспиранты под контролем лектора выполняют задания, способствующие практическому усвоению лекционного материала; лекции-демонстрации проблемного характера, посвященные приемам выполнения различных этапов анализа, принципу работы и устройству приборов для регистрации и спектров. Демонстрации составлены на основе базовых и новейших мировых научных результатов, в том числе результатов исследований, проведенных авторами программы дисциплины. В заключительной части курса аспиранты готовят реферат по теме, связанной с использованием методов колебательной спектроскопии при выполнении ими диссертационной работы. В ходе курса используется интерактивная система дистанционного размещения материалов лекций и проверки полученных студентами знаний на портале distant.msu.ru (адрес https://distant.msu.ru/course/index.php?categoryid=139).

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю): Аспирантам предоставляется программа курса, план занятий и перечень домашних заданий. По теме каждой лекции указывается материал в источниках из списков основной и вспомогательной литературы, а также из интернет-ресурсов.

10. Ресурсное обеспечение:

Перечень используемых информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы:

- Базы данных Национального института стандартов и технологий: www.nist.gov
- Базы данных по материаловедению: materials.springer.com
- AIST база спектральных данных для органических соединений: sdbs.db.aist.go.jp
- интерактивная система дистанционного размещения материалов лекций и проверки полученных студентами знаний на портале distant.msu.ru (адрес https://distant.msu.ru/course/index.php?categoryid=139).

Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. К. Накамото. «ИК-спектры и спектры КР неорганических и комплексных соединений». М., Мир, 1991, 536 с.
- 2. К. Наканиси. «Инфракрасные спектры и строение органических соединений. Практическое рауководство». М. Мир, 1965, 213 с.
- 3. Ю.А.Пентин, Г.М.Курамшина. «Основы молекулярной спектроскопии. Методы в химии». М., Мир, 2008, 400 с.
- 4. D.C. Harris, M.D. Bertolucci «Symmetry and Spectroscopy». Dover Publications Inc., 1980, 576 с. Дополнительная литература
- 1. G. Socrates. «Infrared and Raman Characteristic Group Frequencies Infrared and Raman Characteristic Group Frequencies. Tables and Charts». 2001 John Wiley & Sons Ltd
- 2. Инфракрасная спектроскопия полимеров. Под ред. И. Деханта. ГДР, 1972. Пер. с нем., под ред. к.х.н. Э.Ф. Олейника. М., Химия, 1976.
- 3. Смит А., Прикладная ИК спектроскопия, Мир, М., 1982
- 4. Харрик Н., Спектроскопия внутреннего отражения, Мир, М., 1970.
- 11. Язык преподавания русский
- 12. Преподаватели: Колесник Ирина Валерьевна, к.х.н., асс., kolesnik.iv@gmail.com
- 13. Фонды оценочных средств, необходимые для оценки результатов обучения
- 1. Планируемые результаты обучения для формирования компетенций п.5 и соответствующие им критерии оценивания приведены в Приложении 1. 2.

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета.

• Образцы контрольных вопросов для текущего контроля усвоения материала:

- 1. Какую информацию о качественном составе вещества или материала можно получить с использованием методов колебательной спектроскопии?
- 2. Каким образом проводится количественный анализ объектов методами колебательной спектроскопии?
- 3. Каковы правила отбора для полос в инфракрасных спектрах и спектрах комбинационного рассеяния?
- 4. Определите точечную группу симметрии молекулы и активность нормальных колебаний а инфракрасном спектре и спектре комбинационного рассеяния.
- 5. В каких условиях возникает эффект резонансного рамановского рассеяния?
- 6. В чем заключается адиабатическое приближение?
- 7. Что такое гармонический осциллятор?
- 8. Каковы общие черты и в чем заключаются различия с точки зрения наблюдаемых явлений и аппаратного оформления методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния?
- 9. Назовите примерный алгоритм действий при идентификации полос в колебательных спектрах веществ и материалов.
- 10. Перечислите и охарактеризуйте проблемы, возникающие при идентификации веществ и материалов с использованием баз данных.
- 11. Перечислите преимущества и ограничения различных способов регистрации инфракрасных спектров в режимах пропускания, нарушенного полного внутреннего отражения, диффузного отраженгия.
- 12. Перечислите, какие основные факторы играют роль при выборе режима регистрации спектра комбинационного рассеяния.
- 13. Каким образом при помощи ИК-спектроскопии изучают активные центры на поверхности катализатора?

• Образцы домашних заданий:

- 1. Освоение формул взаимосвязи между основными единицами измерения, используемыми в спектроскопии при решении вычислительных задач.
- 2. Определите точечную группу симметрии молекулы и активность нормальных колебаний а инфракрасном спектре и спектре комбинационного рассеяния.
- 3. По рекомендованной литературе изучите фактор-групповой анализ для химического соединения.
- 4. Предложите способ пробоподготовки и изготовления стандартных образцов для количественного анализа заданного объекта.
- 5. Идентифицируйте соединений по колебательному спектру, используя таблицы характеристических частот.
- 5. Изучите способы идентификации активных центров на поверхности катализаторов по ИК-спектрам адсорбированных молекул.
- 6. Изучите примеры установления механизмов реакций на каталитических центрах с использованием колебательной спектроскопии.

• Примерные темы рефератов:

- 1. Количественный анализ содержания карбонат- и нитрат-ионов в межсолевых пространствах слоистых соединений РЗЭ методами колебательной спектроскопии.
- 2. Идентификация фосфорсодержащих групп в аморфных фосфатах кальция методами колебательной спектроскопии.

- 3. Идентификация углеродных материалов методом спектроскопии комбинационного рассеяния.
- 4. Определение типа проводимости одностенных углеродных нанотрубок с использованием спектросокпии комбинационного рассеяния.
- 5. Спектроскопия ИК катализаторов на основе оксидов металлов и анализ состояния поверхностных ОН-групп.
- 6. Изучение структуры цеолитов при помощи спектроскопии ЯМР на ядрах 29Si.
- 7. Установление природы центров брёнстедовской и льюисовской кислотности оксидных катализаторов.
- 8. Изучение активных центров катализаторов с использованием молекул-зондов.
- Образцы вопросов для промежуточной аттестации зачета:

к темам 1 – 3:

- 9. Что такое группа, ее свойства. Представления, перестановки, матрицы.
- 10. Точечные группы и их обозначения. Алгоритм определения точечной группы молекулы.
- 11. Матричные представления операций симметрии, таблицы характеров.
- 12. Уравнение Шредингера, адиабатическое приближение.
- 13. Возникновение ИК- и Рамановских спектров.
- 14. Спектры двухатомных молекул
- 15. Нормальные колебания более сложных молекул. Использование таблиц характеров.
- 16. Поляризованные спектры. Спектры кристаллов.
- 17. Резонансное рамановское рассеяние.
- 18. Устройство инфракрасного спектрометра. Принцип работы Фурье-спектрометра.
- 19. Преимущества ИК-фурье спектрометра для анализа материалов.
- 20. Устройство спектрометра для регистрации спектров комбинационного рассеяния.

Методические материалы для проведения процедур оценивания результатов обучения

Зачет или экзамен проходит по билетам, включающим 2 вопроса: один — по темам №№1-5, второй — по темам №№6,7. Кроме этого, преподавателем оценивается также подготовленный аспирантом реферат по теме, связанной с его диссертационным исследованием. Уровень знаний аспиранта по каждому вопросу, а также качество подготовки реферата и ответы на дополнительные вопросы оцениваются по пятибалльной шкале. В случае, если на все вопросы был дан ответ, оцененный не ниже чем на 3 балла, аспирант получает общую оценку «зачтено». На экзамене выставляется средняя оценка по 2 вопросам билета и реферату, округление — в пользу студента. Ведомость приема зачета или экзамена подписывается преподавателем, принимающим зачет или экзамен.

Приложение 1. Оценочные средства для промежуточной аттестации по дисциплине «Методы колебательной спектроскопии для исследования функциональных материалов» на основе карт компетенций выпускников

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю)						
	1	2	3	4	5	
31 (УК-2) Знать:	Отсутстви	Фрагментарные	Общие, но не	Сформированные,	Сформированные	зачет в форме
методы	е знаний	знания в области	структурированные	но содержащие	систематические	индивидуальног
критического		методов	знания в области	отдельные пробелы	знания в области	о собеседования,
анализа и оценки		колебательной	методов	знания в области	методов	реферат
современных		спектроскопии	колебательной	методов	колебательной	
научных			спектроскопии	колебательной	спектроскопии	
достижений, а также				спектроскопии		
методы						
генерирования						
новых идей при						
решении						
исследовательских и						
практических задач,						
в том числе в						
междисциплинарны						
х областях						
У1 (ОПК-1) Уметь	Отсутстви	Частично	В целом успешно,	В целом успешно,	Сформированное	письменное
выбирать и	е умений	освоенное умение в	но не	но содержащие	умение в выборе и	решение задач
применять в		выборе и	систематически	отдельные пробелы	применении	
профессиональной		применении	осуществляемое	умения в выборе и	экспериментальны	
деятельности		экспериментальны	умения в выборе и	применении	х подходов и	
экспериментальные		х подходов и	применении	экспериментальны	методов в	
и методы и подходы		методов в	экспериментальны	х подходов и	колебательной	
в колебательной		колебательной	х подходов и	методов в	спектросокпии	
спектросокпии		спектросокпии	методов в	колебательной		
			колебательной	спектросокпии		
			спектросокпии			

21 (FIIC 1) 2		ж	11	C1	C1	1
31 (ПК-1) Знать	Отсутстви	Фрагментарные	Неполные	Сформированные,	Сформированное	зачет в форме
современные	е знаний	представления о	представления о	но содержащие	систематические	индивидуальног
подходы,		современных	современных	отдельные пробелы	представления о	о собеседования,
применяемые в		подходах,	подходах,	представления о	современных	реферат
неорганической		применяемых в	применяемых в	современных	подходах,	
химии, при		неорганической	неорганической	подходах,	применяемых в	
исследовании		химии, при	химии, при	применяемых в	неорганической	
веществ и		исследовании	исследовании	неорганической	химии, при	
материалов		веществ и	веществ и	химии, при	исследовании	
методами		материалов	материалов	исследовании	веществ и	
колебательной		методами	методами	веществ и	материалов	
спектроскопии		колебательной	колебательной	материалов	методами	
_		спектроскопии	спектроскопии	методами	колебательной	
			_	колебательной	спектроскопии	
				спектроскопии	_	
У1 (ПК-1) Уметь	Отсутстви	Интуитивный и не	Допускает	Выбирает	Умеет правильно	письменное
использовать	е умений	всегда верный	отдельные ошибки	правильные	выбрать и	решение задач,
современные		выбор методов	при выборе	методы	обосновывать	реферат
методы		колебательной	методов	колебательной	методы	
колебательной		спектроскопии при	колебательной	спектроскопии при	колебательной	
спектроскопии при		исследовании	спектроскопии при	исследовании	спектроскопии при	
решении		неорганических	исследовании	неорганических	исследовании	
практических задач		веществ и	неорганических	веществ и	неорганических	
в области		материалов	веществ и	материалов, но	веществ и	
неорганической		1	материалов	затрудняется	материалов,	
ХИМИИ			1	предложить	,	
				научное		
				обоснование своего		
				выбора		
У1 (ПК-16) Уметь	Отсутстви	Знает возможные	Аргументирует	Аргументировано	Грамотно и	письменное
использовать	е умений	методы	выбор метода	выбирает методы	аргументировано	решение задач
данные	- 5	колебательной	колебательной	колебательной	выбирает методы	1
колебательной		спектроскопии, но	спектроскопии, но	спектроскопии для	колебательной	
спектроскопии для		для исследования	учитывает только	решения	спектроскопии для	
получения		конкретного	немногие факторы	конкретных задач,	решения	
HOMY TOHMA		Rollkpelliolo	пемногие факторы	конкренных задач,	Решения	

информации о	объекта выбирает	но некоторые	конкретных задач
составе, структуре и	их наобум	факторы не	
свойствах твердых		учитывает	
тел.			