МГУ им. М.В. Ломоносова

Факультет наук о материалах

Отчет по десятинедельному практикуму

Синтез и исследование шпинелей состава Mg_{1-x}Co_xAl₂O₄

Выполнили студенты 1 курса

Егорин Д.Д.

Олейниченко К.Н.

Руководители:

Зыкин М.А.

Володина М.О.

Оглавление

Введение	3
Литературный обзор	4
Экспериментальная часть	8
Итоги рентгено-фазового анализа	12
Выводы	22
Список использованной литературы	23

Введение

Шпинели — минералы класса сложных оксидов общей формулы AB_2O_4 , где A - Mg^{2+} , Zn^{2+} , Mn^{2+} , Fe^{2+} , Ni^{2+} , Co^{2+} ; B - $A1^{3+}$, Mn^{3+} , Fe^{3+} , V^{3+} , Cr^{3+} , Ti^{4+} .

Шпинели образуются при высоких температурах из твердофазных реагентов. Из-за того, что для получения шпинелей используются твёрдые вещества, реакция протекает очень медленно, и для её ускорения применяются различные химические методы синтеза. совместное разложение солей, содержащих нужные катионы металлов, или их соосаждение из растворов для достижения гомогенности. Именно шпинелей, применением выполнению синтеза ЭТИХ гомогенизации, а также сравнению результатов и будет посвящена наша работа.

Цель работы

• Синтез серии замещенных шпинелей с использованием двух методов гомогенизации и их последующим сравнением

Задачи

- Получение навыки практической работы
- Изучение тематической литературы
- Синтез серии шпинелей состава $Mg_{1-x}Co_xAl_2O_4$ с использованием соосаждения и механического перетирания
- Ознакомление с методом рентгенофазового анализа и обработка данных, полученных с его помощью
- На основании полученных данных установить кристаллическую структуру полученных шпинелей
- Сравнить преимущества и недостатки использованных методов гомогенизации

Литературный обзор

Шпинели – минералы класса сложных оксидов общей формулы AB₂O₄, где A - Mg²⁺, Zn²⁺, Mn²⁺, Fe²⁺, Ni²⁺, Co²⁺; B - A1³⁺, Mn³⁺, Fe³⁺, V³⁺, ${\rm Cr}^{3+}$, ${\rm Ti}^{4+}$. Шпинели – системы твёрдых растворов с широким изоморфизмом катионов А и В. Шпинели кристаллизуются в кубической сингонии. образуя главным образом октаэдрические кристаллы. 32 аниона О, Элементарная ячейка включает которые образуют кубическую упаковку 64 плотнейшую c тетраэдрическими (катионы занимают 8) и 32 октаэдрическими (занимают 16) пустотами.

Для шпинелей характерны высокотемпературные условия образования. Для синтеза чаще всего используют прямое взаимодействие смесей исходных реагентов. Твёрдые тела. как правило, взаимодействуют друг с другом при нормальных условиях, и для реакции между ними, протекающей с заметной скоростью, необходимо нагревание, часто до 1000-1500°C. MgO и Al_2O_3 реагируют друг с другом с образованием MgAl₂O₄ однако на практике скорость реакции между ними при обычных температурах очень мала. Взаимодействие в смеси порошков MgO и Al₂O₃ становится заметным только при нагревании на 1200 °C, а для завершения реакции необходима выдержка при температуре 1500°С в течение нескольких суток.

Структура веществ-участников реакции. При сравнении структуры $MgAl_2O_4$ со структурами MgO и Al_2O_3 выявляются одновременно признаки сходства и различия. И MgO, и шпинель имеют плотнейшую кубическую упаковку ионов кислорода, тогда как Al_2O_3 – искажённую гексагональную плотнейшую упаковку. В то же время ионы Al^{3+} занимают как в Al_2O_3 , так и в шпинель октаэдрические позиции, а ионы Mg^{2+} - октаэдрические позиции в MgO, но тетраэдрические в $MgAl_2O_4$.

Почему протекание твердофазной реакции затруднено?

Для того, чтобы ответить на этот вопрос и понять, почему заметная скорость реакции наблюдается только при высоких температурах, взаимодействие кристаллов MgO Al_2O_3 . соприкасающихся по общей плоскости. В результате соответствующего теплового воздействия на границе раздела кристаллов возникает слой $MgAl_2O_4$, причём на первой стадии образуются зародыши $MgAl_2O_4$. Значительные структурные различия исходных веществ и продукта затрудняют зародышеобразование, так как совершающаяся при этом структурная перестройка требует разрыва существующих связей и образования новых, а также миграции атомов на расстояние, которое в некоторых случаях может быть весьма значительным (на атомном уровне). Ионы Mg^{2+} в MgO и ионы $A1^{3+}$ в Al_2O_3 размещаются в регулярных узлах решётки, и их перемещение в соседний незанятый узел происходит с большим трудом. Только при высокой температуре ионам сообщается тепловая энергия, достаточная для того, чтобы тот или иной ион мог покинуть свою нормальную позицию в решётке и начать диффундировать через кристалл. Таким образом, образование зародышей MgAl₂O₄ требует некоторой перегруппировки кислородных ионов в месте локализации будущего зародыша и одновременно взаимного обмена ионов Mg^{2+} и $A1^{3+}$ через поверхность раздела двух кристаллов.

Следующий этап взаимодействия двух кристаллов — рост образовавшегося слоя продукта взаимодействия — может протекать ещё более затруднённо, чем зародышеобразование. Для того, чтобы реакция развивалась дальше и толщина слоя $MgAl_2O_4$ увеличивалась, необходима встречная диффузия ионов Mg^{2+} и $A1^{3+}$ через уже имеющийся слой шпинели к новым реакционным поверхностям. При этом появляются уже две такие поверхности: одна отделяет MgO от $MgAl_2O_4$, а другая -

 $MgAl_2O_4$ от Al_2O_3 . Если принять, что диффузия ионов Mg^{2+} и $A1^{3+}$ к этим поверхностям является стадией, лимитирующей скорость реакции в целом, то становится понятным, почему взаимодействие MgO и Al_2O_3 даже при высоких температурах протекает медленно (так как диффузия — медленный процесс); кроме того, следует учесть, что скорость реакции по мере её развития должна убывать, так как толщина слоя продукта постепенно увеличивается.

Площадь поверхности твёрдых тел.

Площадь поверхности одного и того же количества твёрдого вещества может меняться в широчайших пределах в зависимости от того, находится тело в виде монокристалла, в виде грубого или тонкого порошка; иначе говоря, площадь поверхности зависит от размера частиц.

Возьмём монокристалл MgO в форме куба объёмом 1 см³. Он имеет общую поверхность граней $6*10^{-4}$ м². Представим теперь, что этот кристалл измельчён в тонкий порошок, каждая частичка которого тоже представляет из себя куб со стороной 10 мкм=10-3 см. Такой размер частиц характерен для образцов, подвергшихся истиранию в агатовой ступке в течение 1 часа. Порошок теперь состоит из 109 кристаллитов, каждый из которых имеет поверхность 6*10⁻⁶ см². Таким образом, суммарная поверхность частиц порошка составляет $6*10^3$ см $^2 = 6*10^{-1}$ м 2 . Наконец, представим себе, что то же количество MgO взято в виде очень тонкого порошка, частицы которого имеют форму куба с ребром 100 $A=10^{-6}$ см. Для достижения столь малого размера кристаллических частиц потребовался бы чрезвычайно длительный помол, однако химические методы, такие, как осаждение из растворов или разложение солей, позволяют довольно легко получить порошок с таким размером частиц. Образец MgO содержит теперь 10¹⁸ криталлитов суммарной площадью поверхности $10^{18*}(6*10^{-16}) = 600 \text{ м}^2$.

Видно, что площадь поверхности MgO, как и любого другого твёрдого вещества, увеличивается при уменьшении размера частиц. Увеличение площади поверхности реагирующих веществ оказывает сильнейшее воздействие на скорость протекания реакции, так как увеличивается суммарная площадь контактирующих поверхностей.

Соосаждение.

Одним из приёмов интенсификации твердофазных реакций является совместное осаждение компонентов реакции. В ряде случаев с его помощью можно получить одновременно малый размер частиц и высокую степень гомогенизации, что соответствует ускорению твердофазной реакции. Однако этот приём не следует применять для получения образцов высокой чистоты и материалов со строго заданной стехиометрией, так как осадок всегда в той или иной степени загрязнён веществами, которые теоретически должны полностью оставаться в растворе.

Экспериментальная часть.

Синтез с помощью механической гомогенизации.

Для совместного разложения солей были выбраны алюмоаммонийные квасцы, магниево-аммонинийные и кобальто-аммонийные шёниты. Без-аммонийные сульфаты этих металлов не подходят для синтеза, так как образуют несколько кристаллогидратов, изза чего становится невозможным сделать взвесь с точно заданными количествами солей.

Все необходимые реагенты были найдены в практикуме и перекристаллизованы для получения чистых кристаллогидратов известного состава.

Нам было нужно получить 5 образцов массой 0,5г с различным содержанием примеси кобальта, для этого мы провели необходимые расчёты:

- 1) $n(\text{шпинели}) = m(\text{шпинели})/M(\text{шпинели}) = 0.5/(24,3 \cdot (1-x)+58,93 \cdot x+2 \cdot 26,98)$
- 2) $m((NH_4)_2Mg(SO_4)_2 \cdot 6H_2O) = 360 \cdot (1-x) \cdot n(шпинели)$
- 3) $m((NH_4)_2Co(SO_4)_2 \cdot 6H_2O) = 395 \cdot x \cdot n(шпинели)$
- 4) m(4NH4Al(SO4)2 ·12H2O) = 453 · n(шпинели)

Мы воспользовались общими формулами (1) – (4) для нахождения

X	$m((NH_4)_2Mg(SO_4)_2\cdot 6H_2O), \Gamma$	$m(NH_4Al(SO_4)_2 \cdot {}^{\downarrow} H_2O), \Gamma$	$m((NH_4)_2Co(SO_4)_2 \cdot 6H_2O), \Gamma$
0	1,2676	3,19	-
0,2	0,9664	3,04	0,2651
0,4	0,6923	2,904	0,5064
0,6	0,4417	2,779	0,727
1	-	2,56	1,158

масс исходных веществ, необходимых для синтеза (Таблица 1):

Уравнение протекающей реакции:

• $(1-x)(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O + x(NH_4)_2Co(SO_4)_2 \cdot 6H_2O +$ $2(NH_4)Al(SO_4)_2 \cdot 12H_2O = Mg_{1-x}Co_xAl_2O_4 + 2(NH_4)_2SO_4 + 4SO_2\uparrow +$ $4O_2\uparrow 30H2O\uparrow$

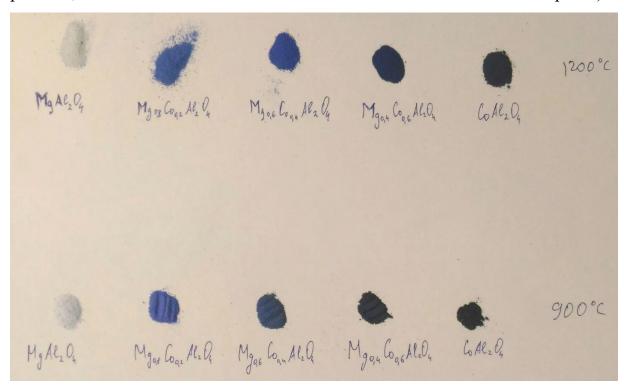
В каждом из пяти случаев мы в течение 10 минут перетирали каждое из исходных веществ в фарфоровой ступке, затем смешивали полученные перетёртые навески в фарфоровом тигле и нагревали на газовой горелке до прекращения выделения воды из кристаллогидратов. Также, в ходе нагревания происходило частичное разложение солей. Затем полученную безводную смесь пересыпали в фарфоровую ступку и опять перетирали в течение 10 минут. После этого смесь была помещена в алундовый тигель и прокалена на воздуходувной горелке. В ходе этого происходило частичное разложение солей, а также окончательное удаление воды из смеси. Смесь вновь была тщательно перетёрта в фарфоровой ступке, помещена в алундовый тигель и поставлена в муфельную печь для обжига при температуре 900°C. После этого полученное вещество было опять тщательно перетёрто в ступке. Часть образца мы отправили на РФА, а остальное пересыпали в алундовый тигель и подвергли обжигу при температуре 1200°C в муфельной печи, после чего также перетёрли и отправили на РФА. При этом с увеличением содержания примеси кобальта в образце увеличивалась насыщенность синей окраски вещества, что свидетельствует о том, что ионы кобальта заняли тетраэдрические пустоты в структуре шпинели, то есть, как мы и предполагали, произошло замещение магния.

Метод соосаждения.

Мы также воспользовались общими формулами (1) – (4), выведенными ранее для нахождения количества реагентов, а затем,

используя полученные значения, нашли количество гидрокарбоната натрия, необходимое для осаждения, после количества веществ мы перевели в массы (Таблица 2):

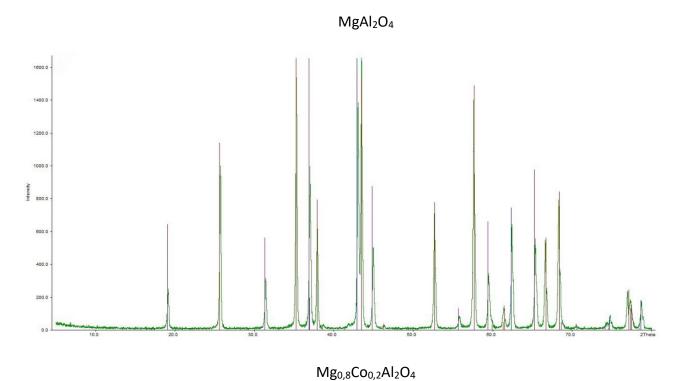
x	$m((NH_4)_2Mg(SO_4)_2 \cdot 6H_2O)$	$m(NH_4Al(SO_4)_2 \cdot {}^{\downarrow} H_2O)$	$m((NH_4)_2Co(SO_4)_2 \cdot 6H_2O)$	m(NaHCO3)
0	1,2676 г	3,19 г	-	2,365 г
0,2	0,9664 г	3,04 г	0,2651 г	2,256 г
0,4	0,6923 г	2,904 г	0,5064 г	2,15 г
0,6	0,4417 г	2,779 г	0,727 г	2,06 г
1	-	2,56 г	1,158 г	1,89 г

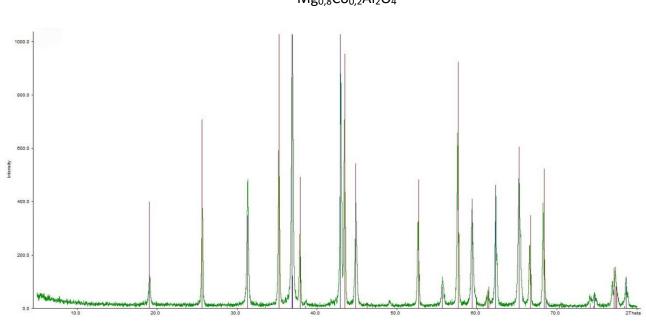

Таблица 2. "Массы исходных веществ для соосаждения"

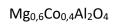
Уравнение протекающих реакций:

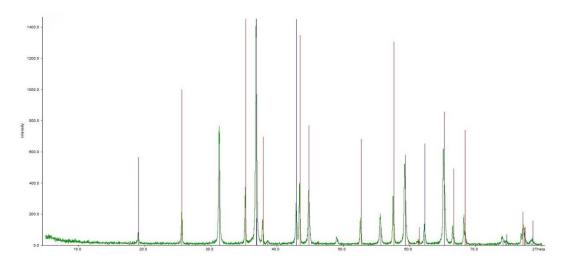
- $NH_4Al(SO_4)_2 \cdot 12H_2O + 4NaHCO_3 = NH_3\uparrow + 2Na_2SO_4 + Al(OH)_3\downarrow + 4CO_2\uparrow + 13H_2O$
- $(NH_4)_2Mg(SO_4)_2 \cdot 6H_2O + 2NaHCO_3 = MgCO_3\downarrow + 2Na_2SO_4 + 8H_2O + 2NH_3\uparrow$
- $(NH_4)_2Co(SO_4)_2 \cdot 6H_2O + 2NaHCO_3 = CoCO_3 \downarrow + 2 Na_2SO_4 + 8H_2O + 2NH_3 \uparrow$
- $xCoCO_3 + (1-x)MgCO_3 + 2Al(OH)_3 = Mg_{1-x}Co_xAl_2O_4 + CO_2\uparrow + 3H_2O\uparrow$

Навески исходных веществ были в течение 10 минут перетёрты в фарфоровой ступке, а затем растворены. Полученные растворы были слиты в один стакан, перемешаны и нагреты на газовой горелке до кипения при постоянном помешивании для полноты протекания реакции, а затем охлаждены до комнатной температуры. Полученный осадок был отфильтрован и высушен в сушильной печи. После этого он был тщательно перетёрт в фарфоровой ступке, помещён в алундовый тигель и прокалён на воздуходувной горелке. При этом произошло частичное разложение карбонатов и гидроксида, находящихся в смеси. Затем смесь была вновь тщательно перетёрта и поставлена в муфельную печь для обжига при 900°С. После этого полученное вещество было опять тщательно перетёрто в ступке. Часть образца мы отправили на РФА, а

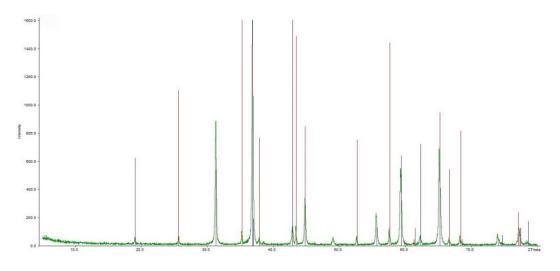

остальное пересыпали в алундовый тигель и подвергли обжигу при температуре 1200°С в муфельной печи, после чего также перетёрли и отправили на РФА. Как и при первом методе синтеза, при увеличении количества примеси кобальта в шпинели увеличивалась насыщенность синей окраски вещества, однако цвет шпинелей, полученных вторым способом был ещё более насыщенным, чем у образцов, полученных первым способом (пятый образец, полученный методом соосаждения (х = 1) был настолько насыщенного тёмно-синего цвета, что сначала мы решили,

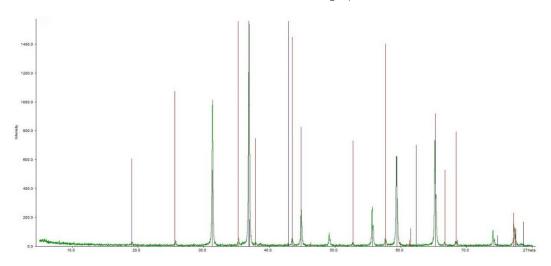



Итоги рентгено-фазового анализа

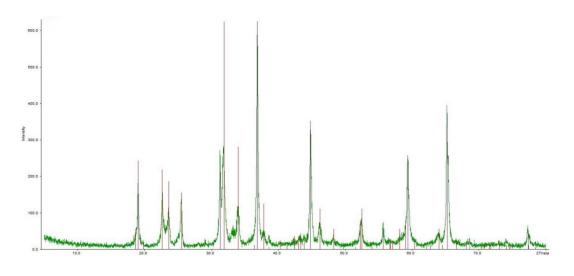

Ниже приведены рентгено-фазовые диаграммы для полученных нами образцов:

Метод разложения солей, 1200°C:

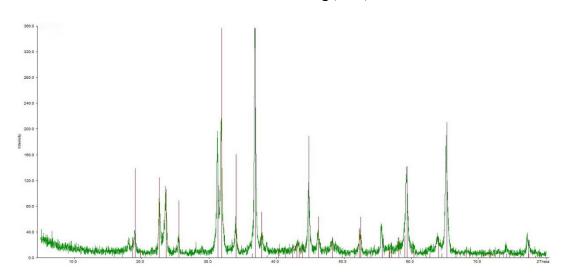


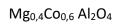


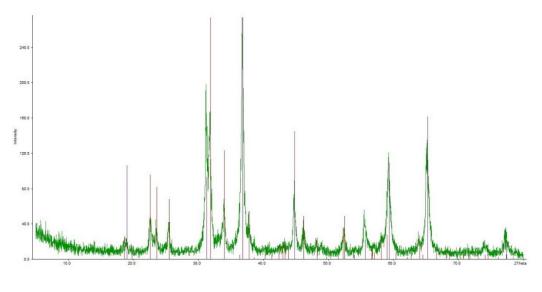
$Mg_{0,4}Co_{0,6}AI_2O_4$



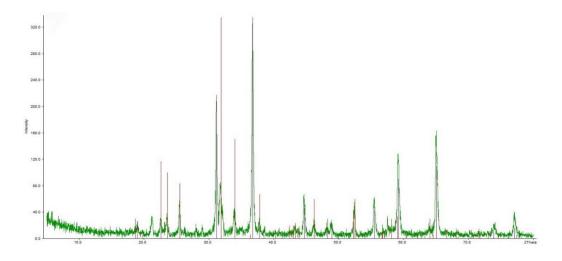
CoAl₂O₄

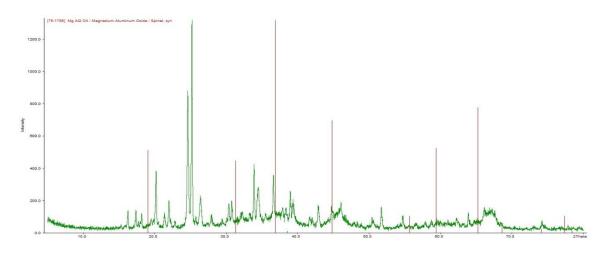

Метод соосаждения, 1200°C:



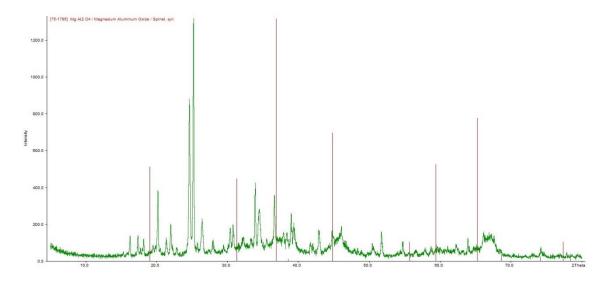


Mg_{0,8}Co_{0,2}Al₂O₄

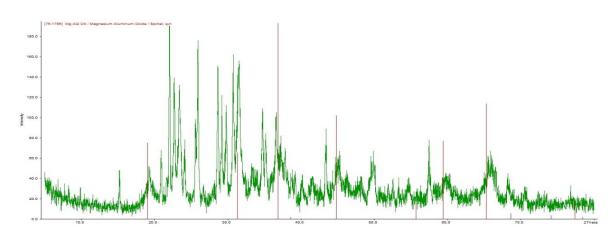

$Mg_{0,6}Co_{0,4}AI_2O_4$



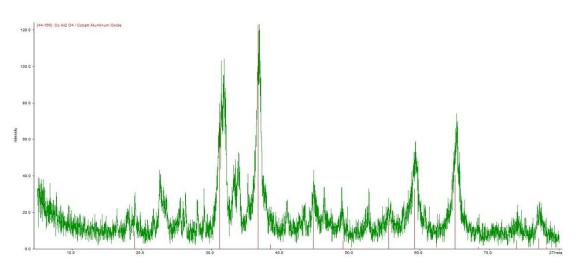
CoAl₂O₄



Метод разложения солей, 900°C:



CoAl₂O₄



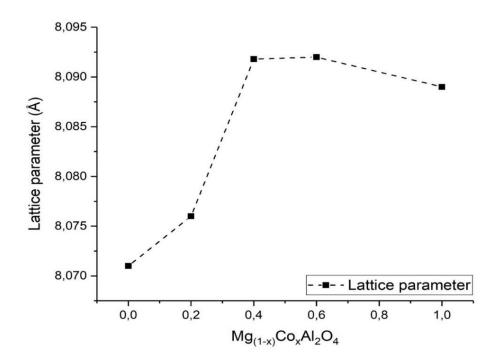
Метод соосаждения, 900°C:

MgAl₂O₄

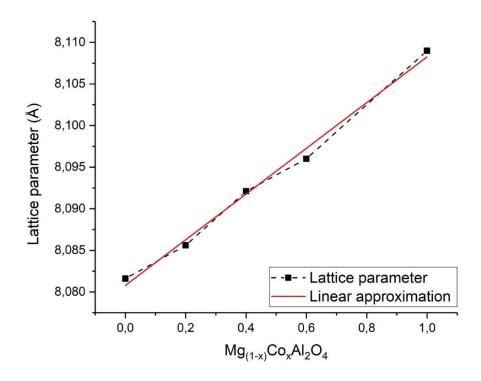
CoAl₂O₄

Как и ожидалось, при обжиге образцов в печи при температуре 900°C реакция только начала хоть сколь-нибудь заметно протекать зародышеобразования), о чём свидетельствует рентгенограмме. Он указывает на значительное содержание примесей, которыми в нашем случае являются оксиды алюминия и магния (то есть шпинелей, исходные вещества ДЛЯ получения полученные при разложении солей), а в образцах, полученных методом соосаждения, ещё и сульфат натрия(ожидаемое «загрязнение» осадка). Всё это означает, что мы практически подтвердили теоретические данные.

На рентгенограммах образцов с механической гомогенизацией после обжига при 900°C наблюдается тенденция лучшей кристаллизации и степени гомогенизации по мере замещения магния кобальтом. У образцов, полученных методом соосаждения не наблюдается гомогенности, поэтому параметры кристаллической решетки и массовая доля примесей были посчитаны только для образцов после обжига при 1200°C. У серии образцов механической гомогенизации наблюдаются примеси оксидов алюминия и магния, но при замещении магния кобальтом увеличивается доля шпинели и уменьшается доля не сплавившихся оксидов. Параметр решетки меняется нелинейно. У образцов соосаждения присутствует примесь сульфата натрия, однако, параметр решетки меняется линейно, что означает что при химической гомогенизации после обжига при 1200 были получены шпинели предсказанных составов.


Для определения соотношения фаз в полученных образцах был выбран метод корундовых чисел, который предназначен для полуколичественного рентгеновского анализа смесей, когда необходимо быстро оценить состав выбранного образца с невысокой, но приемлемой точностью. В качестве внутреннего стандарта использован синтетический корунд (α-Al₂O₃) как наиболее чистый, стабильный и доступный

материал. Если весовое отношение внутреннего стандарта к анализируемой фазе будет 1:1, тогда корундовое число определяется как соотношение максимальных по интенсивности (I=100%) отражений образца и корунда:


 $K=I_{\text{обр.100\%}}/I_{\text{кор.100\%}},$ где $I_{\text{кор.100\%}}$ -отражение корунда, K- корундовое число, взятое из базы данных.

Образе ц	Теоретическ ий состав	Параметр Решетки, Å	ω, %
	Совместное разложение, 1200°C		
KD1	$MgAl_2O_4$	8,071	21,23%
KD2	$\begin{matrix} Mg_{0,8}Co_{0,2}Al_2 \\ O_4 \end{matrix}$	8,076	30,58%
KD3	$\begin{matrix} Mg_{0,6}Co_{0,4}Al_2 \\ O_4 \end{matrix}$	8,0918	54,09%
KD4	$\begin{matrix} Mg_{0,4}Co_{0,6}Al_2 \\ O_4 \end{matrix}$	8,092	73,00%
KD5	CoAl ₂ O ₄	8,089	81,13%
	Карбонатное соосаждение, 1200°C		
KD-121	$\mathrm{MgAl_2O_4}$	8,0816	69,55%
KD-122	$\begin{matrix} Mg_{0,8}Co_{0,2}Al_2 \\ O_4 \end{matrix}$	8,0856	64,14%
KD-123	$\begin{matrix} Mg_{0,6}Co_{0,4}Al_2 \\ O_4 \end{matrix}$	8,0921	54,36%
KD-124	$\begin{array}{c} Mg_{0,4}Co_{0,6} \\ Al_2O_4 \end{array}$	8,096	49,76%

Образец	Фазы	Интенсивность макс. пика	Корундовое число, I/I $_{c}$	ω, %
	Со	вместное разложение, 1200°C		
KD1	$(MgAl_2O_4)$			ı
	Шпинель	997	1,74	21,23%
	Al_2O_3	1655	0,99	61,93%
	MgO	1378	3,03	16,85%
KD2	$(Mg_{0,8}Co_{0,2}Al_2O_4)$			
	Шпинель	1028	2,34	30,58%
	Al_2O_3	710	1	49,42%
	MgO	873,5	3,04	20,00%
KD3	$(Mg_{0,6}Co_{0,4}Al_2O_4)$			
	Шпинель	1449,5	2,5	54,09%
	Al_2O_3	401	1	37,41%
	MgO	277	3,04	8,50%
KD4	$(Mg_{0,4}Co_{0,6}\ Al_2O_4)$			
	Шпинель	1601,5	3	73,00%
	Al_2O_3	142,7	1	19,51%
	MgO	166,3	3,04	7,48%
KD5	$(CoAl_2O_4)$			
	Шпинель	1018	3,7	81,13%
	Al_2O_3	64	1	18,87%
Карбонатное соосаждение, 1200°С				
KD-121	$(MgAl_2O_4)$			I
	Шпинель	623	1,74	69,55%
	Na_2SO_4	282,2	1,8	30,45%
KD-122	$(Mg_{0,8}Co_{0,2}Al_2O_4)$			
	Шпинель	500	2,34	64,14%
	Na_2SO_4	215	1,8	35,86%
KD-123	$(Mg_{0,6}Co_{0,4}Al_2O_4)$			
	Шпинель	355,6	2,5	54,36%
	Na_2SO_4	215	1,8	45,64%
KD-124	$(Mg_{0,4}Co_{0,6} Al_2O_4)$			
	Шпинель	274	3	49,76%
	Na ₂ SO ₄	166	1,8	50,24%
KD-125	(CoAl ₂ O ₄)			
	Шпинель	335	3,7	65,85%

1. "Закон Вегарда для Серии образцов механической гомогенцизации, $1200^{\circ}C$

2. "Закон Вегарда для Серии образцов механической гомогенцизации, 1200оС

Выводы

В ходе этого практикума мы:

- 1. Получили навыки работы в лаборатории
- 2. Освоили метод рентгено-фазового анализа и получили навыки обработки результатов РФА
- 3. Синтезировали шпинели состава $Mg_{1-x}Co_xAl_2O_4$ методами соосаждения и механического перетирания
- 4. Исследовали полученные шпинели методом рентгенофазного анализа
- 5. На основании полученных данных установили структуру полученных шпинелей
- 6. Сравнили преимущества и недостатки использованных методов синтеза шпинелей

Список использованной литературы

- 1. Вест А. «Химия твердого тела», 1988г
- 2. Отчеты студентов І курса ФНМ по десятинедельному практикуму.