Московский Государственный Университет имени М.В. Ломоносова. Факультет Наук о Материалах.

От по десятинедельному практикуму Синтез и исследование ринмановой зелени $Zn_{1-x}Co_xO$

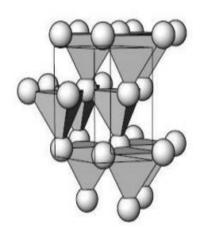
Работу выполнили: Студенты 1 курса ФНМ МГУ Закиров Артур Лыжина Ангелина

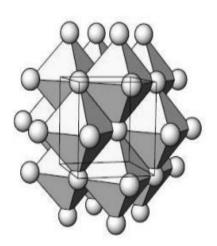
> Руководители: Жиров А. И. Брылёв О. А. Григорьева А. В. Трусов Л. А.

Содержание

Введение	3 -
Литературный обзор	4 -
Цели и задачи	6 -
Экспериментальная часть Способ №1: "Спекание шенитов: <i>Zn(NH₄)₂(SO₄)₂⋅6H₂O</i> и <i>Co(NF</i> 8 -	H4)2(SO4)2·6H2O"
Способ №2: "Спекание оксалатов <i>ZnC₂O₄</i> и <i>CoC₂O₄</i> " Способ №3: "Соосаждение гидроксидов кобальта и цинка с прокаливанием"	последующим их
Обсуждение результатов	15 -
Выводы	21 -
Будущим первокурсникам!	22 -
Благодарности	23 -
Список использованной литературы	24 -

Введение


Настоящая работа имела своей целью получение и исследование твердых растворов состава $Zn_{1-x}Co_xO$ с тривиальным названием "ринманова зелень".


В ходе выполнения задания синтез был успешно проведён тремя различными способами; был проведен РФА для всех образцов, а именно полученных разными способами, при разных температурах и с разными степенями замещения.

Литературный обзор

Название "ринманова зелень" (также встречаются названия "шведская зелень" и "кобальтовая зелень") связано, вероятно, с именем Свена Ринмана (1720-1792), шведского исследователя, который занимался горным делом и металлургией.

Ринманова зелень представляет собой твердый раствор оксида кобальта CoO в оксиде цинка с общей формулой $Zn_{1-x}Co_xO$. Сами по себе эти оксиды ZnO - белый с оттенком желтого, CoO - оливково-зеленый. Твердые растворы с мольным содержанием кобальта 1- 15% имеют зеленый цвет, а при значениях, близким к 100%, окраска становится розовой, оттенок которой зависит от состава и способа получения, в этом случае структура соединения уже представляет собой твердый раствор оксида цинка в оксиде кобальта. Поскольку эти соединения обладают различной кристаллической структурой (см.рис), непрерывный ряд твердых растворов не образуется и при значениях \mathbf{x} , близких к 0.5, существует смесь твердых растворов на основе оксидов цинка и кобальта.

*На рисунке представлены кристаллические структуры ZnO (слева) и CoO (справа). Ионы цинка находятся в центре тетраэдров кобальта в центре октаэдров образованных атомами кислорода.

- 4 -

¹ Д. О. Чаркин, А. И. Баранов, П. С. Бердоносов Методическая разработка к практикуму «Начала химического эксперимента»

Кристаллическая решетка ринмановой зелени имеет структуру типа гексагональной решетки вюрцита (модификация сульфида цинка ZnS с тетрагональным окружением атомов цинка), в которой часть атомов цинка замещена атомами кобальта.

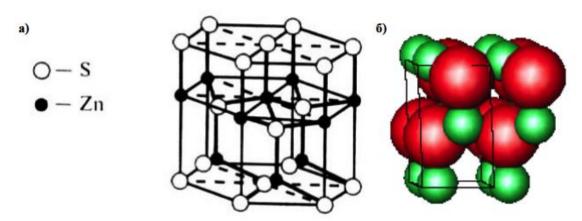


Рис 2. Структура *ZnS* (на рис 2-б атомы S красного цвета, атомы цинка - зеленого)

Цели и задачи

Целью проводимой нами работы был <u>синтез</u> ринмановой зелени различными методами и при разных температурах (1200°C и 900°C), наблюдение за изменением окраски соединений в зависимости от концентрации реагентов, а также <u>исследование</u> полученных образцов с помощью рентгенофазового анализа, <u>определение</u> параметров кристаллической решетки и выявление связи параметра ячейки от содержания замещающего элемента.

Общей целью, поставленной перед нами руководителями, было <u>получение навыков</u> работы в практикуме и приобретение первого опыта в практической части неорганической химии.

Прежде чем приступить к синтезу образцов, мы определили **главные** вопросы и задачи:

- ✓ Получить ринманову зелень с разными степенями замещения;
- ✓ Исследовать зависимость цвета образцов от степени замещения;
- ✓ Исследовать зависимость параметра решетки от степени; замещения методом рентгенофазового анализа;
- ✓ Подвести итоги.

Экспериментальная часть

В нашей работе использовались **три** способа получения ринмановой зелени:

- <u>Первый</u> способ состоял в спекании шенитов двойных солей цинка и кобальта, $Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O$ и $Co(NH_4)_2(SO_4)_2 \cdot 6H_2O$;
- <u>Второй</u> в спекании оксалатов ZnC2O4 и CoC2O4;
- <u>Третий</u> в соосаждении гидроксидов кобальта и цинка, $Co(OH)_2$ и $Zn(OH)_2$, с последующим их прокаливанием.

Эти соединения были выбраны по следующим причинам. Во-первых, они имеют постоянный состав. К примеру, гидрат $ZnSO_4 \cdot 7H_2O$ — доступный реактив, постепенно теряет воду, в результате чего его состав отличается от гептагидратного, т.е. не будет заранее известна его относительная молекулярная масса, и, следовательно, невозможно будет правильно рассчитать его количество для получения продукта с нужным мольным соотношением Zn и Co. Во-вторых, способы получения шенитов, оксалатов и гидроксидов соединений достаточно просты.

В нашей практике было запланировано получить 0,2 г каждого продукта состава $Zn_{1-x}Co_xO$, соответственно расчёты ведутся исходя из этого.

Итак, перейдем к описанию проделанной работы.

Способ №1: "Спекание шенитов*: Zn(NH4)2(SO4)2·6H2O* и *Co(NH4)2(SO4)2·6H2O* "

Для начала нам необходимо было синтезировать цинковый шенит. Для этого были приготовлены насыщенные растворы предварительно растёртых в ступке сульфатов цинка $ZnSO_4$ и аммония $(NH_4)_2SO_4$ при температуре около 80° С в минимальном количестве воды. Затем растворы были нагреты почти до кипения, и в стакан с сульфатом цинка заливался раствор сульфата аммония. В получившемся растворе, сразу после помещения в кристаллизатор, заполненного холодной водой, начали образовываться удлинённые белые кристаллы шенита. После того как раствор полностью охладился и весь осадок выпал, выпавшие кристаллы отфильтровывались на фильтре Шотта.

Получение цинкового шенита взаимодействием сульфатов цинка и аммония соответствует уравнению:

$$ZnSO_4 + (NH_4)_2SO_4 + 6H_2O = Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O$$

Всего было получено около 23 г шенита, что соответствует выходу ≈ 81%.

n(шенита),моль	$m(ZnSO_4),$	$m(NH_4)_2SO_4$	$m_{\text{теор.}}$,	m _{факт.} , г	Выход,
	Γ	Γ	Γ		%
0,07	11,27	9,24	28,4	23	81

Затем, аналогичным образом, используя насыщенные растворы сульфата кобальта $CoSO_4$ и аммония $(NH_4)_2SO_4$, получили кобальтовый шенит по уравнению:

$$CoSO_4 + (NH_4)_2SO_4 + 6H_2O = Co(NH_4)_2(SO_4)_2 \cdot 6H_2O \downarrow$$

Кристаллы шенита кобальта насыщенно *розовые*, *рассыпчатые*. Было получено около 7 г шенита, что соответствует выходу ≈ 74%.

n(шенита),моль	m(CoSO ₄),	m(NH ₄) ₂ SO ₄ ,	теор., г	m _{факт.} , г	Выход, %
	Γ	Γ			
0,024	3,72	3,168	9,48	7	74

После получения нужных нам реактивов (цинковый и кобальтовый шениты), мы перешли соответственно к самому их спеканию. Спеканием шенитов планировалось получить образцы с мольным содержанием кобальта 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%.

Соответствующие количества шенитов были сначала перемешаны и растерты в ступке, затем они были помещены в алундовый тигель. После этого данную смесь прокаливали на горелке Теклю до окончания бурного выделения газов. Сначала смесь плавилась, причем при плавлении она приобретала насыщенно синий оттенок.

После бурного протекания реакции в жидкой фазе произошло отвердевание, система приобрела розовато-фиолетовый оттенок. В данном процессе происходило разложение шенитов до оксидов кобальта *CoO* и цинка *ZnO*, при этом выделялись сначала пары воды *H*₂*O*, затем аммиак *NH*₃, кислород *O*₂ и сернистый газ *SO*₂:

 $Zn(SO_4)_2(NH_4)_2 \cdot 6H_2O + Co(SO_4)_2(NH_4)_2 \cdot 6H_2O = ZnO + CoO + 4NH_3\uparrow + 4SO_2\uparrow + 2O_2\uparrow + 14H_2O\uparrow$

Полученная субстанция была затем <u>перетёрта</u> в фарфоровой ступке, помещена в алундовый тигель. Некоторую её часть была <u>прокалена</u> на воздуходувной горелке до полного прекращения выделения газов. Все остальные образцы были <u>прокалены</u> в печи <u>при</u> температуре <u>900°С</u> и <u>при</u> температуре <u>1200°С</u>.

Полученные твердые растворы имели *зеленый* цвет, наиболее светлый у 5%-образца. Образцы, начиная с 15%, отчасти были *темно-зелеными*. Образцы с большим содержанием кобальта почти не имели зеленого оттенка, начиная с 45%, они приобретали *черный* оттенок. В результате прокаливания все образцы на вид стали гомогенными, образцы 45%, 55%, 65%, 75%, 85%, 95% приобрели *черный* цвет, остальные – разные оттенки *зеленого*.

В следующей таблице представлены массы и выходы для большинства полученных продуктов:

Образец	Цвет	Масса цинк. шенита, г	Масса кобальт. шенита, г	Масса образца, г	Выход, %
Zn _{0,95} Co _{0,05} O		0,9443	0,049	0,152	76
Zn _{0,85} Co _{0,15} O		0,9001	0,15	0,126	63
Zn _{0,75} Co _{0,25} O		0,7565	0,248	0,114	57
Zn _{0,65} Co _{0,35} O		0,6605	0,35	0,144	72
Zn _{0,55} Co _{0,45} O		0,5633	0,457	0,168	84
Zn _{0,45} Co _{0,55} O		0,4650	0,56	0,188	94
Zn _{0,35} Co _{0,65} O		0,3603	0,67	0,192	96
Zn _{0,25} Co _{0,75} O		0,2601	0,775	0,124	62
Zn _{0,15} Co _{0,85} O		0,1602	0,89	0,142	71
Zn _{0,05} Co _{0,95} O		0,0501	1	0,134	67

Способ №2: "Спекание оксалатов ZnC₂O₄ и CoC₂O₄"

Смесь оксалатов цинка ZnC_2O_4 и кобальта CoC_2O_4 была получена путём смешивания кобальтаммонийного $Co(NH_4)_2(SO_4)_2 \cdot 6H_2O$ и цинкаммонийного $Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O$ шенитов с избытком оксалата аммония $(NH_4)_2C_2O_4 \cdot H_2O$. Навески шенитов взяты из расчёта на синтез 0,2 г соединения $Co_xZn_{1-x}O$, где x=3%, 7%, 10%, 12%, 17%, 20%, 30% (в переводе в 100%). Взятые навески были смешаны и растворены при нагревании в химическом стакане, затем добавлены к нагретому насыщенному раствору оксалата аммония. В результате выпали в осадок кристаллогидраты оксалата цинка $ZnC_2O_4 \cdot 2H_2O$ и оксалата кобальта $CoC_2O_4 \cdot 2H_2O$.

$$(1-x)(NH_4)_2Zn(SO_4)_2 + x(NH_4)_2Co(SO_4)_2 + (NH_4)_2C_2O_4 + 2H_2O =$$

 $(1-x)ZnC_2O_4 \cdot 2H_2O \downarrow + xCoC_2O_4 \cdot 2H_2O \downarrow + 2(NH_4)_2SO_4$

После отстаивания большую часть маточного раствора сливали, а оставшуюся часть вместе с осадком переносили на фильтр Шотта, подключенный к колбе Бунзена с водоструйным насосом, где отсасывали маточный раствор и промывали осадок небольшим количеством этанола.

Далее эта смесь была прокалена на газовой горелке до полного её позеленения или почернения. В процессе происходило разложение оксалатов, выделялись сначала пары воды H_2O , а затем углекислый CO_2 и угарный CO газы, образовывалась оксидная система:

$$(1-x)$$
ZnC₂O₄·2H₂O + x CoC₂O₄·2H₂O = Co_xZn_{1-x}O + 2CO₂↑ + 2CO↑+ 4H₂O↑

Цвет данных систем был *более насыщенным*, *более ярким*, нежели цвет систем, полученных спеканием шенитов. Затем для того чтобы кристаллизовать системы для возможности проведения РФА, они были помещены в печь при температуре 900°C.

Оксалатным соосаждением были получены следующие образцы:

Образец	Цвет	Масса цинк. шенита, г	Масса кобальт. шенита,г	Масса оксалата аммония, г	Масса образца ,г	Выход,%
Zn _{0,97} Co _{0,03} O		0,4537	0,0136	0,4	0,176	88
Zn _{0,93} Co _{0,07} O		0,4363	0,0318	0,4	0,176	88
Zn _{0,90} Co _{0,10} O		0,4203	0,045	0,4	0,190	95
Zn _{0,88} Co _{0,12} O		0,4145	0,05473	0,4	0,172	86
Zn _{0,83} Co _{0,17} O		0,3930	0,0778	0,4	0,162	81
Zn _{0,80} Co _{0,20} O		0,3802	0,092	0,4	0,212	106
Zn _{0,70} Co _{0,30} O		0,3401	0,14	0,4	0,202	101

Выход образца с 20% и 30% содержанием кобальта выше 100%, так как *CoO* окислился до *Co*₃*O*₄, который имеет большую массу (доказательством являются результаты, полученные с данных РФА).

Способ №3: "Соосаждение гидроксидов кобальта и цинка с последующим их прокаливанием"

Для совершения этого опыта мы взяли готовые цинковый $Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O$ и кобальтовый $Co(NH_4)_2(SO_4)_2 \cdot 6H_2O$ шениты, интенсивно смешали их в литровом химическом стакане в соответствующем соотношении на магнитной мешалке, и, так как шениты плохо растворимы, мы поставили стакан на газовую горелку, начали нагревать до кипения и полного растворения смеси.

Навески брали из расчёта на синтез 0,2 грамма продукта состава $Co_xZn_{1-x}O$, где x= 1%, 2%, 4%, 6%.

Затем в раствор мы <u>добавили</u> *NaHCO*₃ с определенной массой, вследствие чего раствор <u>помутнел:</u> начали <u>осаждаться</u> осадки гидроксидов кобальта *Co(OH)*₂ и цинка *Zn(OH)*₂ по следующей реакции:

 $Zn(NH_4)_2(SO_4)_2 \cdot 6H_2O + NaHCO_3 = Zn(OH)_2 \downarrow + (NH_4)_2SO_{4+}$ $NaHSO_4 + CO_2 \uparrow + 5H_2O$ $Co(NH_4)_2(SO_4)_2 \cdot 6H_2O + NaHCO_3 = Co(OH)_2 \downarrow + (NH_4)_2SO_{4+}$ $NaHSO_4 + CO_2 \uparrow + 5H_2O$

Для получения наиболее чистого осадка гидроксидов, мы сливали раствор и вновь наливали в стакан дистиллированную воду, заранее нагретую, и затем брали пробу на присутствие ионов SO_4^{2-} , добавляя к ней $Ba(NO_3)_2$, в процессе чего выпадал белый осадок $BaSO_4$. Промывали до тех пор, пока проба не стала бесцветной.

Затем полученный раствор <u>отфильтровали</u> на бумажном фильтре, который вскоре оставили на неделю сушиться, а

затем в фарфоровой ступке перетёрли смесь гидроксидов кобальта и цинка, переложив в алундовый тигель, отправили в печь на <u>прокаливание</u> сначала при температуре 900°C, а после при 1200°C.

 $Co(OH)_2 = CoO + H_2O$ $Zn(OH)_2 = ZnO + H_2O$ $xCoO + (1-x)ZnO = Zn_{1-x}Co_xO$

Гидроксидным соосаждением были получены следующие образцы:

Образец	Цвет	Масса цинк. шенита, г	Масса кобальт. шенита, г		Масса образца, г	Выход, %
Zn _{0,99} Co _{0,01} O		0,981	0,0098	0,4565	0,082	41
Zn _{0,98} Co _{0,02} O		0,972	0,0200	0,4570	0,060	30
Zn _{0,96} Co _{0,04} O		0,954	0,0391	0,4575	0,062	31
Zn _{0,94} Co _{0,06} O		0,935	0,0587	0,4580	0,060	30

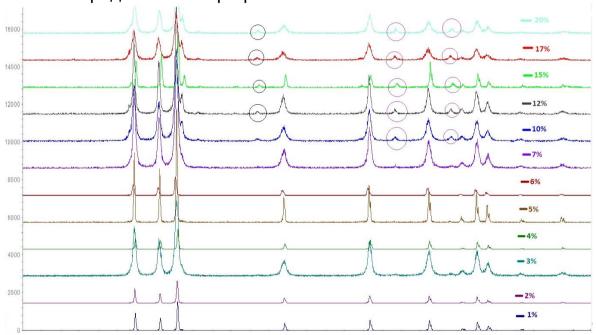
Обсуждение результатов

Эффективности методик синтеза

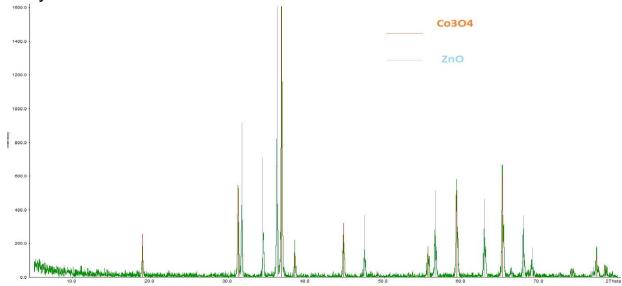
Метод	Плюсы	Минусы
Спекание оксалатов	Хороший выход продукта. Высокие выходы продукта; Самый простой и быстрый способ получения; Цвет образцов самый насыщенный, что повышает качество ринмановой зелени как красителя; Исключается обжиг на воздуходувной горелке.	Не такой быстрый метод получения; Нужное оборудование не всегда доступно, например как воздуходувная горелка. Не разработана точная методика соосаждения оксалатов, не установлено как избавиться от комплекса, из-за которого не осаждается часть кобальта, и как предотвратить окисление СоО до Со₃О₄, что даёт выход ≥ 100%; Вещество получается с большим количеством примесей.
Соосаждение гидроксидов кобальта и цинка	(По данным РФА): получались наиболее точные пики, что удобно для анализа данных.	Долгий способ получения; низкий выход продукта.

Таким образом, «спекание оксалатов» мы считаем наиболее эффективным, во-первых, он в отличии от первого происходит заметно быстрее, во-вторых, прокаливаются оксалаты легко и быстро на обычной газовой горелке, в-третьих, продуктами синтеза являются образцы, чьи цвета получаются наиболее яркими из всех трёх методов, что и повышает качество ринмановой зелени, как красителя.

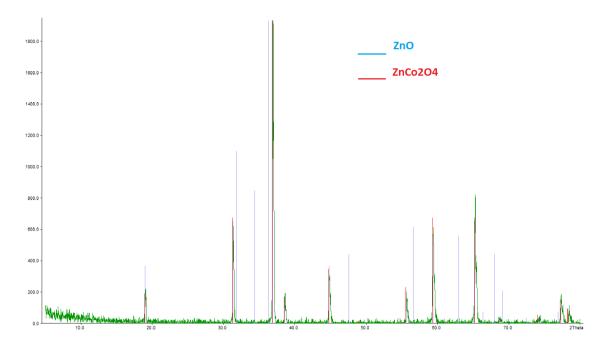
Обработка данных РФА


После обжига в печи все образцы были отправлены на рентгенофазовый анализ (РФА). Полученные результаты обрабатывались с помощью программы WinXpow. Сначала все образцы были исследованы на однофазность, потом у некоторых из них были рассчитаны параметры решётки.

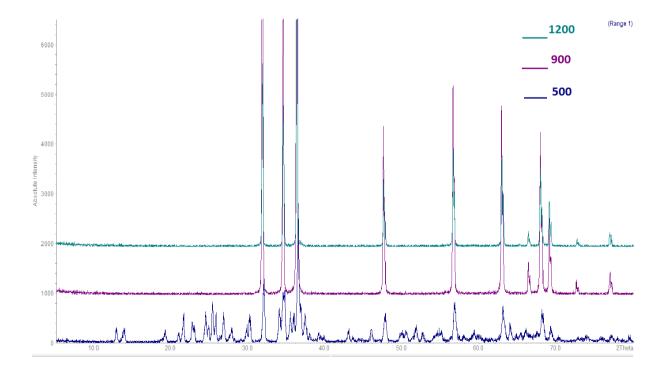
Образцы, обожженные в печи при 1200 градусов, с содержанием кобальта меньше 15% и оказались однофазными, из чего следует, что в данной области температур существуют твёрдые растворы $Zn_{1-x}Co_xO$.

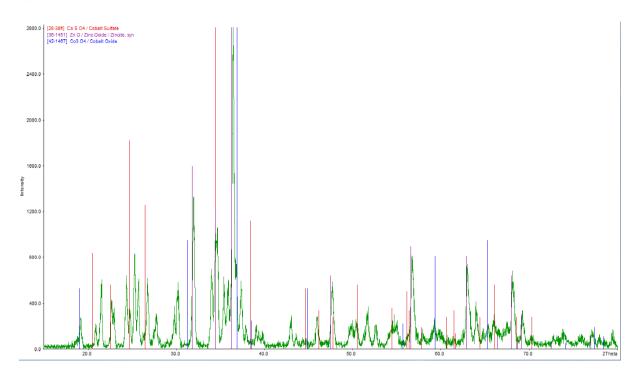

В остальных же образцах, обожженных в печи при 1200 градусов, с содержанием *CoO* равным или большим 15% на графике *CoO-ZnO* наблюдалось появление *Co₃O₄*, соответственно появляется система становится двухфазной. Обратное замещение (замещать *ZnO* на *CoO*) невозможно, поскольку все синтезы проводятся на воздухе, а для данного замещения необходима инертная атмосфера.

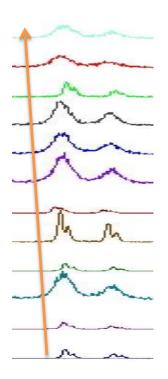
Ниже представлены графики от 1% по 35%



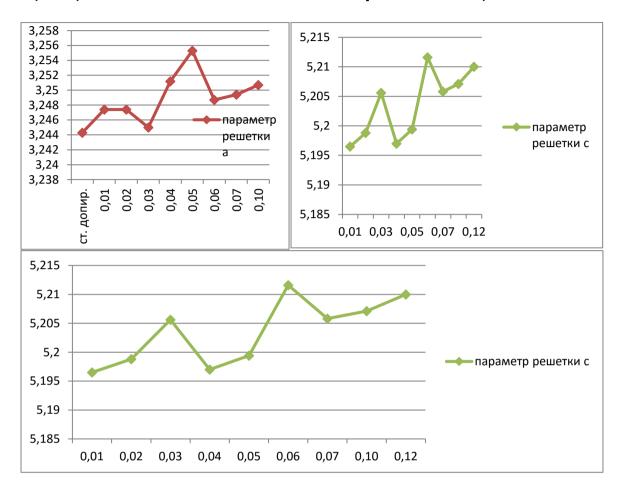
Отмеченные пики показывают на присутствие Co_3O_4 в данных соединениях. При этом пик с самой большой интенсивностью начинает раздваиваться. Соединения с содержанием 1,2,4,6%, синтезированные третьим способом, отличаются от соединений, синтезированных 1 и 2 способами, интенсивностью пиков.


Если же взглянуть на график образца с содержанием *CoO* 65%, получим:


Чем проявляется окисление на воздухе Co_3O_4 . Посмотрев график образца с содержанием CoO 65%, сделаем выводы, что ZnO отчасти внедряется в структуру Co_3O_4 :


Образуется частично $ZnCo_2O_4$, пики которых почти сходны с пиками Co_3O_4 . ZnO в данном графике не наблюдается. Рассматривая получение ринмановой зелени с содержанием CoO 5% при температурах 500,900 и 1200, получим:

Соответственно можно узнать примерные фазы в веществе при обжиге в 500 градусов Цельсия. В ней присутствуют CoSO4, ZnO и CoO, исходя из фазового анализа:



Также из графиков 1%-20%:

Наблюдается некоторое смещение пиков. Это может косвенно указывать на замещение CoO на ZnO, так как ион кобальта больше иона цинка, то увеличивается параметр решѐтки и межплоскостное расстояние d, а значит, по условию Брегга-Вульфа $n\lambda = 2dsin\theta$ синус должен уменьшиться $\Rightarrow \theta$ тоже должен уменьшится, что можно проследить по графику.

Проверим, выполняется ли *закон Вегарда* в нашей работе:

Как мы можем наблюдать, закон Вегарда частично выполняется.

Выводы

В ходе проделанной работы в качестве выводов можно сказать следующее, мы:

- ✓ <u>Синтезировали</u> ринманову зелень тремя различными методами, при разных температурах и <u>определили</u>, что «спекание оксалатов» является самым эффективным методом её получения.
- ✓ <u>Пронаблюдали,</u> что окраска вещества зависит от концентрации реагентов (например, с возрастанием содержания кобальта в соединении *Co_xZn_{1-x}O* вещество постепенно приобретало чёрный оттенок)
- ✓ При обработке данных РФА мы <u>установили</u>, однофазны ли образцы, таким образом, найдя для системы *Zn-Co-O* примерный предел растворимости *CoO* в *ZnO* при данных условиях обжига.
- ✓ <u>Научились</u> с помощью программы WinXpow определять параметры кристаллической решетки однофазных образцов для системы Zn-Co-O и <u>смогли проверить</u> справедливость *закона Вегарда* для неё.
- ✓ <u>Приобрели</u> некоторые навыки работы в химической лаборатории: умение пользоваться химической посудой и газовыми горелками, взвешивать вещества, фильтровать, высушивать, прокаливать.
- ✓ <u>Расширили</u> опыт работы с докладами, отчётами и выступлением перед публикой

Будущим первокурсникам!

Эти 10 недель, которые пройдут весьма быстро, но не бесследно(!), станут хорошим шансом совершенствования ваших навыков работы в лаборатории, возможно, столкнут с тем, с чем вы никогда не сталкивались, касательно как синтезов веществ, так и специального оборудования и химической посуды. Однако подходить к подобному виду работы нужно планомерно и ответственно с самого начала, поэтому, как люди, прошедшие это нелёгкое, но стоящее того испытание, хотим поделиться своими личными наблюдениями для правильного выполнения практикума:

- 1) Не забывайте своевременно заполнять рабочий журнал, записывать результаты каждого взвешивания, наблюдения, расчётов. Делайте это аккуратно, разборчиво, чтобы в дальнейшем вам, разумеется, было легче анализировать процесс синтеза и затем оформлять отчёт о проделанной работе.
- 2) Делайте все осознанно, но если вы в чем-то все-таки не уверены, не стесняйтесь уточнить у преподавателя, в противном случае все может обернуться против вас.
- 3) Начинайте оформление отчёта пошагово, не накапливайте большой объем информации и не откладывайте на последний момент, думая, что всегда так будет легко и свободно, как в начале учебного года, ко дню защиты работ у вас и так будут загруженные трудовые будни и куча дел.
- 4) Постарайтесь как можно раньше познакомиться с методом рентгенофазового анализа (РФА), в освоении он на вид не такой простой, однако не раз к нему ещё придётся обращаться.
- 5) Фотографируйте все образцы и этапы синтеза, фотографии будут неотъемлемой частью вашего доклада.
- 6) Раньше приходите на практикум, чтобы успеть занять для образцов место на обжиг.

Желаем успехов!

Благодарности

Хотим выразить благодарность:

- ❖ Александру Ивановичу Жирову, Олегу Александровичу Брылёву, Анастасии Вадимовне Григорьевой, Льву Артёмовичу Трусову – за ценные практические рекомендации и справедливую критику
- ❖ Алексею Викторовичу Гаршеву и коллективу лаборатории неорганического материаловедения – за быстрый и качественный рентгенофазовый анализ;
- ❖ Сергею Геннадьевичу Дорофееву за высокотемпературный отжиг;
- ❖ Евгению Васильевичу и Галине Давыдовне работникам лаборатории – за предоставленные комфортные условия работы на практикуме;
- ❖ Аспиранткам **Ане** и **Алине** за специальную консультацию и помощь по работе с РФА и WinXPOW.

Список использованной литературы

- Д. О. Чаркин, А. И. Баранов, П. С. Бердоносов Методическая разработка к практикуму «Начала химического эксперимента»
- Отчеты по 10-недельным практикумам прошлых лет
- Интернет-ресурсы http://ru.wikipedia.org. «Википедия»
- Неорганическая химия в трёх томах Под редакцией Ю. Д. Третьякова
- Практикум по неорганической химии, учебное пособие под ред. В.П. Зломанова. М.: МГУ, 1994.
- Брауер Г. Руководство по неорганическому синтезу. М.: Мир, 1985-1986.