Отчёт по десятинедельному практикуму

Синтез и исследование гексаферритов стронция состава SrFe12O19, SrAlFe11O19, Sr0,5Ca0,5Fe6Al6O19, Sr0,75Ca0,25Fe6Al3O19, Sr0,875Ca0,125Fe10,5Al1,5O19

Выполнили студенты I курса Шачнева Светлана Конюхова Анастасия

Научные

руководители: Жиров А.И. Трусов Л.А. Брылёв О.А. Григорьева А.В

Содержание:

1.	Введение	3
2.	Литературный обзор	4
3.	Синтез и анализ образцов	8
	Оксалатное осаждение	8
	II Гидрокарбонатное соосаждение	12
	III Золь-гель метод	15
4.	Исследование магнитных свойств образцов	33
5.	Выводы	36
6.	Пожелания и благодарности	36
7.	Список использованной литературы.	37

Введение

В ходе 10-и недельного практикума нам было предложено синтезировать гексаферрит стронция различными методами, исследовать его магнитные свойства, влияние замещающих элементов (Al и Ca) на магнитные свойства и параметры решетки. Основной целью работы являлось приобретение навыка работы с оборудованием лаборатории, реактивами; обучение работе с обработкой данных с использованием программного обеспечения (WinXPow, Maud,Match). В ходе работы были получены соединения SrFe₁₂O₁₉, SrAlFe₁₁O₁₉, Sr_{0.5}Ca_{0.5}Fe₆Al₆O₁₉, Sr_{0.875}Ca_{0.125}Fe_{10.5}Al_{1.5}O₁₉, Sr_{0.75}Ca_{0.25}Fe₆Al₃O₁₉. Для получения использовались следующие методы:

- Оксалатное осаждение
- Гидрокарбонатное соосаждение
- Золь-гель метод

Синтезированные вещества были проанализированы на рентгеновском дифрактометре и на весах Фарадея.

Обзор литературы

Магнитотвёрдые гексаферриты М-типа AFe₁₂O₁₉ (A = Ba, Sr) широко применяются в промышленности для изготовления постоянных магнитов. Они обладают сильной одноосной магнитокристаллической анизотропией, которая обеспечивает высокие значения коэрцитивной силы материала. Кроме того, гексаферриты отличаются высокой химической и термической стабильностью, что особенно важно для материалов с размерами частиц в нанометровом диапазоне. Гексаферриты являются перспективными материалами для создания элементов микроволновых устройств, работающих на частотах от 1 до 100 ГГц [1]. Наночастицы гексаферритов могут найти применение в носителях информации высокой плотности, магнитных композитах и наноструктурах, а также в области медицины.

Свойства гексаферритов М-типа

<u>Кристаллическая структура</u>

Гексаферриты М-типа представляют собой твёрдые оксидные соединения с общей формулой $MFe_{12}O_{19}$ (M = Ba, Sr, Pb) и изоморфны минералу магнетоплюмбиту, примерный состав которого описывается формулой $Pb_2Fe_{15}Mn_7AITiO_{38}$ [1]. Гексагональная элементарная ячейка гексаферритов содержит две формульные единицы $MFe_{12}O_{19}$. Параметры кристаллической решётки имеют значения около a = 5.9 Å и c = 23 Å и зависят от замещения атомов М и Fe. Кристаллическая структура магнетоплюмбита характеризуется пространственной группой P63/mmc.

Ионы железа в структуре гексаферрита расположены в пяти различных кристаллографических позициях: двух октаэдрических, двух тетраэдрических и одной тригонально-бипирамидальной (рис. 1). Структура может быть представлена комбинацией двух типов блоков: шпинельных блоков S (с осью [111], направленной вдоль оси с кристаллической решётки) и гексагональных блоков R. Блок S состоит из двух слоёв атомов кислорода, содержащих 8 ионов кислорода и 6 ионов железа. Блок R состоит из трёх кислородных слоёв и содержит 11 ионов кислорода, 6 ионов железа и один ион M²⁺. Блоки чередуются в структуре по типу SRS*R*, где S* и R* блоки повернуты на 180° относительно предыдущих (рис. 2).

Рис.1. Координационные полиэдры Fe3+ в структуре гексаферрита М-типа.

Рис.2. Элементарная ячейка гексаферрита М-типа.

Иначе кристаллическую решётку можно представить следующим образом. Ионы кислорода образуют гексагональную плотную упаковку, и последовательность слоёв перпендикулярно направлению [001] выглядит как ABAB... или ACAC.... В каждом пятом слое один из ионов O²⁻ заменён на M²⁺, что возможно вследствие близости ионных радиусов. Ионы железа занимают полости в кладке ионов кислорода.

<u>Ферримагнетизм</u>

Ферримагнетики – это материалы, у которых магнитные моменты атомов различных подрешёток ориентируются антипараллельно, но моменты различных подрешёток не равны, и, тем самым, результирующий момент не равен нулю. Гекксаферрит стронция, исследуюемый в данной работе представляет собой феррит. Ферриты – это соединения оксида железа Fe₂O₃ с оксидами других металлов. В данном случае с оксидом стронция.

Рис.3. Формальное упорядочивание в кристалле ферримагнетика.

Магнитная структура

В состав Феррита входят анионы кислорода O^{2-} , образующие остов их кристаллической решётки; в промежутках между ионами кислорода располагаются катионы Fe³⁺, имеющие меньший радиус, чем анионы O^{2-} , и катионы Me^{k+} металлов, которые могут иметь радиусы различной величины и разные валентности k. Существующее между катионами и анионами кулоновское (электростатическое) взаимодействие приводит к формированию определённой кристаллической решётки и к определённому расположению в ней катионов.

Ионы железа в структуре гексаферрита расположены в пяти различных кристаллографических позициях: двух октаэдрических, двух тетраэдрических и одной тригональнобипирамидальной (рис. 2). Взаимодействие между ионами железа может быть как ферромагнитным, так и антиферромагнитным. В блоках S магнитные моменты ионов железа упорядочены так же, как и в шпинели, т. е. спины четырёх ионов в октаэдрических позициях антипараллельны спинам двух ионов в тетраэдрических позициях. На основании анализа суперобменных* взаимодействий был сделан вывод о магнитной структуре R-блоков: моменты иона в бипирамидальной позиции и трёх ионов в октаэдрических окружениях должны быть параллельны, а моменты двух других ионов в октаэдрах – антипараллельны результирующей намагниченности шпинельного блока.Гексаферриты М-типа имеют ферримагнитную структуру с пятью подрешетками атомов железа (табл. 1).

Позиция	Направление	Окружение	Структурный	Количество
	спина		блок	
12k	1	Октаэдр	R-S	6
$4f_1$	\rightarrow	Тетраэдр	S	2
$4f_2$	\rightarrow	Октаэдр	R	2
2a	1	Октаэдр	S	1
2b	1	бипирамида	R	1

*Суперобменные взаимодействия

Большинство ферро- и ферримагнитных диэлектриков состоит из магнитных 3d-ионов, разделённых такими немагнитными ионами, как O²⁻, Br⁻, Cl⁻ и др. Образуется ситуация, когда расстояния для непосредственного взаимодействия 3d-орбиталей слишком велико и обменное взаимодействие осуществляется перекрытием волновых функций 3d-орбиталей магнитных ионов и p-орбиталей немагнитных ионов. Орбитали оказывают-сягибридизованными, а их электроны становятся общими для нескольких ионов. Такое взаимодействие называется суперобменным.

Влияние микроструктуры на магнитные свойства

Магнитные свойства материала определяются следующими факторами: Спонтанная намагниченность M_s , константа магнитокристаллической анизотропии K_1 и обменные интегралы, остаточная намагниченность M_R , коэрцитивная сила H_C и значение (BH)max. Первые три параметрам определяются строением вещества, а именно его кристаллической структурой и химическим составом. Последние три параметра зависят от микроструктуры: размер частиц и доменная структура ферримагнетика.

Процессы, которые характеризуют эти параметры – это перемагничивание и намагничивание вещества. Эти процессы могут происходит за счет сдвига доменной стенки, от чего увеличится магнитное поле внутри вещества (большая область будет обладать магнитным моментом, ориентированным по полю); а также за счет «поворачивания спина» домена в

противоположную сторону. Первый процесс треует меньше энергии по сравнению со вторым, поэтому при перемагничивании образца сначала сдвигаются доменные стенки. Физическая величина, которая характеризует этот процесс – это коэрцетивная сила. Было установлено, что она сильно зависит от размера частиц. Это можно объяснить следующим образом.

При уменьшении размеров частицы роль междоменных границ в процессах перемагничивания становится менее заметной (более важную роль играет изменение направления спина), поэтому коэрцитивная сила растёт и проходит через максимум при достижении однодоменных размеров. Размер однодоменности в значительной степени зависит от формы частицы. При дальнейшем уменьшении размеров возрастает роль тепловых флуктуаций, и коэрцитивная сила падает.

Для описания процессов перемагничивания однодоменных частиц используется модель когерентного вращения спинов Стонера-Вольфарта и различные её модификации. Когерентное вращение подразумевает собой тот факт, что магнитные моменты всех ионов при перемагничивании поворачиваются одновременно, оставаясь при этом параллельными друг другу.

По модели Стонера-Вольфарта, коэрцитивная сила неупорядоченной совокупности однодоменных частиц, имеющих форму эллипсоидов вращения с главной осью, направленной вдоль оси легкого намагничивания, может быть представлена в виде

$$H_{c} = 0.48 \cdot (2 \cdot \frac{K_{1}}{M_{s}} + (N_{\perp} - N_{||}) \cdot M_{s})$$

где MS – намагниченность насыщения, K1 – константа магнитокристаллической анизотропии, N \perp и N|| – размагничивающие факторы поперёк и вдоль оси лёгкого намагничивания, характеризующие анизотропию формы. Первое слагаемое обусловлено только полем магнитокристаллической анизотропии HA. Второе слагаемое говорит о том, что даже в отсутствие магнитокристаллической анизотропии элементарные магнитные моменты будут иметь тенденцию к выстраиванию в направлении меньшего размагничивающего фактора. Частицы произвольной формы могут быть рассмотрены как эллипсоиды, если их размеры достаточно малы. Множитель 0.48 появляется в тех случаях, когда частицы материала не являются ориентированными вдоль внешнего поля, а хаотично повернуты относительно него. В подобном случае велик вклад обратимого намагничивания, т.е. после снятия внешнего поля магнитные моменты частиц выстраиваются вдоль осей лёгкого намагничивания, не совпадающих с направлением внешнего поля.

Графически поведение ферримагнетика описывается гистерезисом(рис.4), где J_S - это максимальная намагниченнось соединения; J_R – это остаточная намагниченность; H_S - это значение напряженности магнитного поля, при которой достигается максимальная намагниченность вещества; H_K – это коэрцитивная сила (напряженность поля, которое нужно приложить, чтобы полностью размагнитить вещество).

Экспериментальная часть

Получение веществ

I. Оксалатное осаждение

Метод оксалатного осаждения основан на нерастворимости солей щавелевой кислоты Sr²+

и Fe²⁺. В качестве реактивов брали соль Мора (((NH)₄Fe(SO₄)₂), нитрат стронция и оксалат аммония. Были проведены следующие реакции в водных растворах:

 $(NH)_4Fe(SO_4)_2 + (NH)_4C_2O_4 = 2(NH)_4(SO_4)_2 + FeC_2O_4$

 $Sr(NO_3)_2 + (NH)_4 C_2O_4 = NH_4NO_3 + SrC_2O_4$

Полученные смеси отфильтровали на стеклянном фильтре, промыв по одному разу дистиллированной водой и спиртом. Отфильтрованный осадок высушивали в сушильном шкафу при температуре 60° С, а также в шкафчике для веществ при комнатной температуре. Высушенные твердые оксалаты SrC₂O₄ и FeC₂O₄ перетерли в ступке и прокалили. Выход составил 83,5%. Затем они были отожжены при температуре 900[°]С в течение 2 часов, при температуре 1200[°]С в течение 2 часов.

Уравнения полного разложения оксалатов:

 $SrC_2O_4 \rightarrow SrO + CO + CO_2$

 $2 \text{ FeC}_2\text{O}_4 \rightarrow \text{Fe}_2\text{O}_3 + 3\text{CO} + \text{CO}_2$

Суммарное уравнение получения гексаферрита стронция:

 $SrC_2O_4 + 12 FeC_2O_4 \rightarrow SrFe_{12}O_{19} + 19CO + 7CO_2$

Расчеты были проведены для получения 2,128 грамма конечного вещества:

Вещество	Молярная масса,	Количество вещест-	Масса вещества,
	г/моль	ва, моль	грамм
SrFe ₁₂ O ₁₉	1064	0,002	2,128
$Sr(NO_3)_2*4H_2O$	284	0,002	0,568
$(NH)_4Fe(SO_4)_2*6H_2O$	392	0,024	9,408

Таблица 1. Данные об используемых реагентах и полученном веществе.

образец: OX_0 500⁰C-2часа (обработан в WinXpow) гексаферит стронция (SrFe₁₂O₁₉) не был получен методом оксалатного осаждения, образовалась смесь оксидов Fe₂O₃, Fe₃O₄ параметры ячейки: cellA-5.0341Å, cellC-13.7489Å массовое соотношение: Fe₂O₃ - 66.74%, Fe₃O₄ - 33.26%

образец: OX_0 (500 0 C-2часа), обработанный в Match показал более точный состав смеси: Fe₂O₃, Fe_{2.667}O₄

образец: OX_1 1200 ⁰C-2часа (метод оксолатного осаждения) При увеличении температуры обжига было получено относительно чистое вещество гексаферит стронция (SrFe₁₂O₁₉) параметры ячейки: cellA-5.8794Å , cellC-23.036Å

II. <u>Гидрокарбонатное соосаждение</u>

Соосаждение – это метод, в котором гомогенизация смеси происходит в растворе. Преимущество данного метода над осаждением заключается в том, что гомогенизация смеси происходит в растворе, где частицы распределены более равномерно, чем в перетертой твердой смеси. Таким образом, получаем более однородную

В данном методе была использована реакция нитратов Sr^{2+} и Fe^{2+} с гидракарбонатом аммония. В результате в осадок выпадают карбонат стронция и гидроксид железа (III).

 $Sr(NO_3)_2 + NH_4HCO_3 \rightarrow SrCO_3 \downarrow + NH_4NO_3 + HNO_3$

 $2 \text{ Fe}(\text{NO}_3)_3 + 3 \text{ NH}_4\text{HCO}_3 \rightarrow 2\text{Fe}(\text{OH})_2 + 3\text{NH}_4\text{NO}_3 + 3\text{HNO}_3 + 3\text{CO}_2$

Соли железа(II) и стронция(II) были растворены отдельно от гидрокарбоната аммония. Далее растворы солей прилили к горячему раствору гидрокарбоната аммония. В результате выпал осадок карбоната стронция(II) и гидроксида железа (III). Осадки отфильтровали на бумажном фильтре, полученные фильтраты высушили при комнатной температуре (несколько дней,,рис.5) и в сушильном шкафу при температуре около 60⁰С.

Выход точно определить не удалось, так как образцы не были до конца досушены в тот момент, когда мы поставили их на отжиг. Высушенную смесь перетерли в ступке и поставили на отжиг при температуре 1200⁰C.

Вещество	Молярная масса,	Количество вещест-	Масса вещества,
	г/моль	ва, моль	грамм
SrFe ₁₂ O ₁₉	1064	0,001	1,064
$Sr(NO_3)_2*4H_2O$	284	0,001	0,284
$Fe(NO_3)_3*9H_2O$	404	0,012	4,848

Таблица 2. Данные об используемых реагентах и полученном веществе.

образец: GK_2 1200 ⁰С-2часа

гексаферит стронция (SrFe₁₂O₁₉) не был получен методом гидрокарбонатного соосаждения, образовалась смесь оксидов Fe₂O₃, Fe₃O₄ параметры ячейки: cellA-5.030Å, cellC-13.713Å массовое соотношение: Fe₂O₃ -99.24%, Fe₃O₄-0.76%

Diffraction Pattern Graphics

образец: GK_2 1200 ⁰С-2часа

также был вторично обработан в программе Match,
причем образовалась смесь оксидов $\rm Fe_2O_3, Fe_3O_4, Fe_{2.667}O_4$

III.i. Золь-гель метод

В данном работе в качестве геле-образователя мы взяли лимонную кислоту. Метод заключается в следующем: цитратные комплексы железа и стронция полимеризуются и образуют гель. Далее при обжиге на горелке образуются оксиды железа(III) и стронция(II), а цитрат сгорает до CO_2 и H_2O .

В качестве реагентов брали нитраты железа(III) и стронция, лимонную кислоту.

Соли растворяли отдельно, потом растворы смешивали и добавляли лимонную кислоту. Для получения матрицы лимонной кислоты мы брали примерное соотношение *лимонная кислота*:(Sr²⁺+12Fe³⁺)=3:1.

Чтобы образовался гель в растворе должна быть нейтральная среда. Для повышения pH в раствор добавляли концентрированный раствор аммиака. При этом раствор поменял цвет с коричневого на темно-зеленый (рис.6). Такое изменение цвета можно объяснить образованием буферного раствора.

Рис.6. Раствор нитратов и лимонной кислоты с добавлением аммиака.

Далее раствор выпаривали на песчаной бане. При это он порыжел и уменьшился в объеме приблизительно в 3,5 раза. После того, как вся большая часть воды испарилась стали образовываться пузыри, после того, как они лопнули оставшаяся смесь резко затвердела и приобрела серый цвет (рис.2 а,б,в). Оставшиеся жидкие части обожгли горелкой до полного затвердевания. Полученное твердое вещество перетерли в ступке и поставили на отжиг при 1200^оС.

Рис.7. Процесс гелеобразования и обжига геля на горелке. Расчет для получения конечного продукта, массой 900 ⁰C, 1200 ⁰C.

Вещество	Молярная масса,	Количество вещест-	Масса вещесвта,
	г/моль	ва, моль	грамм
$SrFe_{12}O_{19}$	1064	0,001	1,064
$Sr(NO_3)_2*4H_2O$	284	0,001	0,284
$Fe(NO_3)_3*9H_2O$	404	0,012	4,848

Таблица 3. Данные о веществах при синтезе SrFe₁₂O₁₉

образец: 3GP_1 900 ⁰С (золь-гель метод) Был получен гексаферит стронция (SrFe₁₂O₁₉) с примесью Fe₂O₃

параметры ячейки: cellA-5.900Å, cellC-23.023Å массовое соотношение: SrFe₁₂O₁₉-53.07%, Fe₂O₃-46.93%

образец: 3G_0 1200 ⁰С-2часа (золь-гель метод) Был получен гексаферит стронция (SrFe¹²O¹⁹) параметры ячейки: cellA-5.8549Å, cellC-22.943Å

Таким образом, увеличение температуры способствовало формированию относительно чистого вещества, поэтому пики при 900 0 Cu 1200 0 C не совпадают(из-за нахождения в системе нескольких фаз при 900 0 C)

<u>III.ii. Замещение</u>

В данной работе мы пробовали замещать Fe^{3+} на Al^{3+} , а также Sr^{2+} на Ca^{2+} . Из литературных данных известно, что замещение железа алюминием изменяет магнитные свойства гексаферрита стронция, а именно: умень ает намагниченность насы ения и увеличивает ко рцетивную силу. При замещении стронция кальцием также замещали железо алюминием. Замещение кальцием не влияет на магнитные свойства вещества, однако из-за большого размера иона кальция, межатомное расстояние в решетке увеличивается и ионам алюминия легче встроится в решетку.

Замещенные гексаферриты стронция синтезировали также золь-гель методом. Технология синтеза была такой же как и в случае незамещенного SrFe₁₂O₁₉. В качестве реагентов брали безводный SrCO₃, безводный CaCO₃, Fe(NO₃)₃*9H₂O, Al(NO₃)₃*9H₂O.

III.ii.i. Замещение Fe^{3+} на Al^{3+}

В данном синтезе отличие от предыдущего было только в расчетах количества лимонной кислоты: *лимонная кислота*:($Sr^{2+}+yX^{3+}+(12-y)Fe^{3+}$)=3:1, где X – это Al³⁺.

Вещество	Молярная масса,	Количество вещест-	Масса вещесвта,
	г/моль	ва, моль	грамм
SrAlFe ₁₁ O ₁₉	1064	0,001	1,035
$Sr(NO_3)_2*4H_2O$	284	0,001	0,284
$Fe(NO_3)_3*9H_2O$	404	0,011	4,444
$Al(NO_3)_3*9H_2O$	375	0,001	0,375

Таблица 4. Расчеты для получения SrAlFe₁₁O₁₉.

III.ii.ii. Замещение Sr^{2+} на Ca^{2+} , Fe^{3+} на AI^{3+} .

Общая формула получаемого соединения: Sr_{1-x}Ca_xFe_{12(1-x)}Al_{12x}O₁₉. В данной работе мы получали замещенные гексаферриты, где x=0,5, x=0,25, x=0,125.

Общими особенностями процесса для всех трех замещений были следующие: при предварительном растворении карбоната кальция в $HNO_{3(конц)}$ (растворяли предварительнов кислоте, чтобы получить нитрат кальция, так как карбонат кальция в воде не растворим) выкристаллизовывается $Ca(NO_3)_2$. Однако при приливании растворов нитратов $Fe(NO_3)_3*9H_2O$ и $Sr(NO_3)_2*4H_2O$ осадок растворился. Это объясняется тем, что для полного растворения нитрата кальция необходимо больше воды при данной температуре (это установлено по справочным данным о растворимости нитрата кальция), что и обеспечивает добавление раствора других солей.

Также сильно отличалась последняя стадия синтеза. Если в синтезе незамещенного гексаферрита «жижа» довольно быстро затвердевала, меняя цвет с рыжего или коричневатого на темно-серый, то в данном синтезе после выпаривания воды сначала на поверхности жидкости растут пузыри, потом резко вырастает похожая на коралл масса, которая воспламеняется изнутри. В итоге получаем то, что можем увидеть на рис.8:

Рис.8. Предпоследняя стадия синтеза замещенных гексаферрита стронция. а) вид снаружи;

б) вид «изнутри».

Расчеты для получения конечного вещества приведены в таблицах.

Вещество	Молярная масса,	Количество вещест-	Масса вещесвта,
	г/моль	ва, моль	грамм
Sr _{0,5} Ca _{0,5} Fe ₆ Al ₆ O ₁₉	866	0,0025	2,165
SrCO ₃	148	0,001	0,185
Fe(NO ₃) ₃ *9H ₂ O	404	0,015	6,06
Al(NO ₃) ₃ *9H ₂ O	375	0,0015	5,625
CaCO ₃	100	0.00125	0.125

Таблица 5. Sr_{0,5}Ca_{0,5}Fe₆Al₆O₁₉

Выход составил 96,5%.

Вещество	Молярная масса,	Количество веще-	Масса вещесвта,
	г/моль	ства, моль	грамм
$Sr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O_{19}$	1014,5	0,0025	2,165
SrCO ₃	148	0,0022	0,185
$Fe(NO_3)_3*9H_2O$	404	0,02625	6,06
$Al(NO_3)_3*9H_2O$	375	0,0015	5,625
CaCO ₃	100	0,00125	0,125

Твблица 6. Получение $Sr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O_{19}$

Выход составил 69%.

Вещество	Молярная масса,	Количество вещест-	Масса вещесвта,
	г/моль	ва, моль	грамм
Sr _{0,75} Ca _{0,25} Fe ₆ Al ₃ O ₁₉	965	0,002	1,93
SrCO ₃	148	0,0022	0,222
Fe(NO ₃) ₃ *9H ₂ O	404	0,02625	7,272
Al(NO ₃) ₃ *9H ₂ O	375	0,0015	2,25
CaCO ₃	100	0,00125	0,05

Таблица 7. Полуение Sr_{0,75}Ca_{0,25}Fe₆Al₃O₁₉

Выход составил 94,8%.

Полученные порошки были перетерты в ступке и поставлены на отжиг при 900°С и 1200°С.

образец: 3G_1 900 ⁰C-2часа (золь-гель метод) Был получен замещенный гексаферит стронция (SrAlFe₁₁O₁₉) с примесью SrFe₁₂O₁₉ параметры ячейки: cellA-5.8612Å, cellC-22.960Å

образец: GZ_1 1200 ⁰С-2часа

Был получен замещенный гексаферит стронция (SrAlFe₁₁O₁₉), с примесью гексаферит стронция (SrFe₁₂O₁₉) параметры ячейки: cellA-5.863Å, cellC-22.847Å

На графике можно заметить относительное совпадения пиков из-за совпадения фаз в веществе при разных температурах обжига, при этом кристалличность образца увеличивается

образец: 3G_11 1200 ⁰C-2часа Был получен замещенный гексаферит стронция (Sr_{0,5}Ca_{0,5}Fe₆Al₆O₁₉) с примесью Fe₂O₃ параметры ячейки: cellA-5.8684, cellC-22.862

образец: 3G_11 1200 ⁰C-2часа Был получен замещенный гексаферит стронция(Sr_{0,5}Ca_{0,5}Fe₆Al₆O₁₉) параметры ячейки: cellA-5.866Å, cellC-23.061Å

Московский Государственный Университет им. М.В. Ломоносова Факультет Наук о Материалах

Таким образом, увеличение температуры способствовало формированию большей кристалличности образца, при этом пики, при 900 ^оС и 1200 ^оС не совпали из-за примсей, содержащихся в образце с меньшей температурой обжига

образец: 3G_17 900 ⁰С-2часа

Был получен замещенный гексаферит стронция (Sr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O₁₉) примесью оксида железа(III) параметры ячейки: cellA-5.809Å, cellC-22.917Å

Московский Государственный Университет им. М.В. Ломоносова Факультет Наук о Материалах

образец: 3G_17 1200 ⁰C-2часа Был получен замещенный гексаферит стронция (Sr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O₁₉) параметры ячейки: cellA-5.8679Å cellC-22.987Å

Московский Государственный Университет им. М.В. Ломоносова Факультет Наук о Материалах

Таким образом, увеличение температуры способствовало формированию большей кристалличности образца, при этом пики, при 900 ⁰С и 1200 ⁰С практически совпадали из-за маленького процентного содержания примеси в образцах

образец: 3G_34 900 ⁰С

Был получен замещенный гексаферит стронция (Sr_{0,75}Ca_{0,25}Fe₆Al₃O₁₉) с примесью Fe₂O₃, CaAl₄Fe₈O₁₉ параметры ячейки: cellA-5.803Å, cellC-22.791Å

Московский Государственный Университет им. М.В. Ломоносова Факультет Наук о Материалах

образец: 3G_34 1200 ⁰C-2часа Был получен замещенный гексаферит стронция(Sr_{0,75}Ca_{0,25}Fe₆Al₃O₁₉) параметры ячейки: cellA-5.9292Å, cellC-22.728Å

Московский Государственный Университет им. М.В. Ломоносова Факультет Наук о Материалах

Увеличение температуры способствовало уменьшению количества фаз в образцах и большей кристалличности вещества. На графике видно смещение пиков относительно друг друга, что может быть обяснено неоднофазностью образца при 900 ⁰C

Магнитные свойства

На характер гистерезиса веществ влияют следующие параметры: размер частиц и магнитные свойства полученного кристалла. Как именно магнитные свойства зависят от этих параметров было рассмотрено в разделе «магнитная структура» выше.

Нами были проведены исследования магнитных свойств некоторых полученных образцов с помощью весов Фарадея. При введении магнитного образца в поле на него действует выталкивающая (втягивающая) сила. Эта сила связана с удельной магнитной восприимчивостью χ , массой m образца, помещённого в неоднородное магнитное поле с напряжённостью H и градиентом напряжённости: Fz= χ mgH ∂ H/ ∂ z. Если образец имеет достаточно малый линейный размер, так что на всём его протяжении выполняется условие ∂ H/ ∂ z = const, то можно с помощью чувствительных весов измерить силу F в направлении оси Z и рассчитать магнитную восприимчивость. Такой способ измерения χ получил название метода Фарадея.

Рассмотрим сравнительные графики для раз для разных методов синтеза при температурах отжига 1200 °C и 900 °C.

Сравнение гистерезиса образцов, полученных золь-гель и оксалатным методом. Отжиг проводил в течении 2 часов при температуре 1200⁰С. При использовании гидрокарбонатного соосаждения гексаферрит получен не был.

ОКС-1 – оксалатный метод,

GZ-0 – золь-гель метод.

Сравнение гистерезисов образцов гескаферрита $SrFe_{11}AlO_{19}$ и замещенного гексаферрита $SrFe_{11}AlO_{19}$, полученных золь-гель методов и отожженных при температуре 1200^{0} C.

GZ-1 – незамещенный гексаферрит,

ZGP-1 – замещенный.

Отжиг при 900⁰С. Вещества с замещением, полученные золь-гель методом(сравнительный график):

GZ-1- линиягистеризиса $SrFe_{11}AlO_{19}$,

ZG-17- линиягистерезиса $Sr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O_{19},$

ZG-34- линия гистерезиса $Sr_{0,75}Ca_{0,25}Fe_9Al_3O_{19}$.

Отжиг при 1200⁰С. Замещенные гексаферриты, полученные золь-гель методом:

GZ-1- линия гистерезиса $Sr_1Fe_{11}AlO_{19}$,

ZG'-17- линия гистерезисаSr_{0,875}Ca_{0,125}Fe_{10,5}Al_{1,5}O₁₉,

ZG'-34- линия гистерезисаSr_{0,75}Ca_{0,25}Fe₆Al₃O₁₉.

По данным графикам можно сделать следующие выводы:

1) замещение алюминием приводит к падению намагниченности;

2) в zg-1, видимо, выросли крупные частицы, что привело к сильному уменьшению коэрцетивной силы и соответствующему сужению гистерезиса;

3) возможно, добавление кальция как-то сдерживает рост частиц, так как коэрцитивная сила этих образцов явно больше, чем образца, где замещен был только атом железа на алюминий;

4) у zg-34 петля не вышла на насыщение, значит, там коэрцитивная сила больше, чем может измерить прибор, и, скорее всего, намагниченность насыщения тоже. Следовательно, чтобы оценить эти параметры более точно нужно перенастроить прибор и померить образцы еще раз.

Вещество	Метод синтеза	Температура от-	H _c , Oe
		жига, ⁰ С	
SrFe ₁₂ O ₁₉	Оксалатное сооса-	1200	2500
	ждение		
SrFe ₁₂ O ₁₉	Золь-гель метод	1200	4500
SrFe ₁₁ AlO ₁₉	Золь-гель метод	1200	1800
Sr _{0,875} Ca _{0,125} Fe _{10,5} Al _{1,5} O ₁₉	Золь-гель метод	1200	6700
Sr _{0,75} Ca _{0,25} Fe ₆ Al ₃ O ₁₉	Золь-гель метод	1200	6900
SrFe ₁₁ AlO ₁₉	Золь-гель метод	900	7500
Sr _{0,875} Ca _{0,125} Fe _{10,5} Al _{1,5} O ₁₉	Золь-гель метод	900	7000
Sr _{0,75} Ca _{0,25} Fe ₆ Al ₃ O ₁₉	Золь-гель метод	900	7500

Приведем сводную таблицу магнитных свойств образцов:

Табл. Зависимость магнитных свойств от способов получения и состава.

Выводы

- В ходе работы были получены гексаферрит стронция и его замещенные аналоги тремя методами при двух температурах отжига
- Были исследован магнитные свойства полученных образцов
- На основании данных рентгено-структурного анализа (РФА) можно сделать вывод, что оптимальная температура отжига 1200⁰С, а оптимальный метод синтеза – зольгель метод
- На основании данных по магнитным измерениям и РФА можно сделать вывод, что оптимальное количество атомов алюминия при замещении 3.

<u>Благодарности</u>

Мы от всей души благодарим сотрудников практикума Смирнова Евгения Васильевича, Берегову Галину Давыдовну за предоставленное помещение практикума и реактивы; Брылеву Олегу Александровичу, Григорьевой Анастасии Вадимовне и, особенно, Жирову Александру Ивановичу за ценные вопросы и советы по проведению экспериментов; Лебедеву Василию Александровичуза помощь в обработке рентгенофазового анализа. Также мы благодарим Трусова Льва Артемовича за консультации по свойствам полученных гексаферритов и за предоставление оборудования лаборатории магнитных материалов. Особое спасибо Слепцовой Анастасии за измерение магнитных свойств образцов.

Список использованной литературы:

- 1) Трусов Л.А. "Синтез из оксидных стекол и свойства субмикро- и наночастиц гексаферрита стронция"
- 2) Справочник химика. Т.З. М.: Химия, 1965.
- 3) Вест А. "Химия твердого тела", 1988г.
- 4) Отчеты студентов І курса ФНМ по десятинедельному практикуму.
- 5) Практикум по неорганической химии (под руководством Третьякова Ю.Д.). Издательский центр «Академия», 2004.