Отчёт по десятинедельному практикуму

Синтез и исследование шпинелей состава $Zn(Al_{1-x}Cr_x)2O_4$

Выполнили: студенты 1 курса

Баев Виктор

Тутанцев Андрей

Научные руководители:

Жиров Александр Иванович

Брылёв Олег Александрович

Григорьева Анастасия Вадимовна

Трусов Лев Артёмович

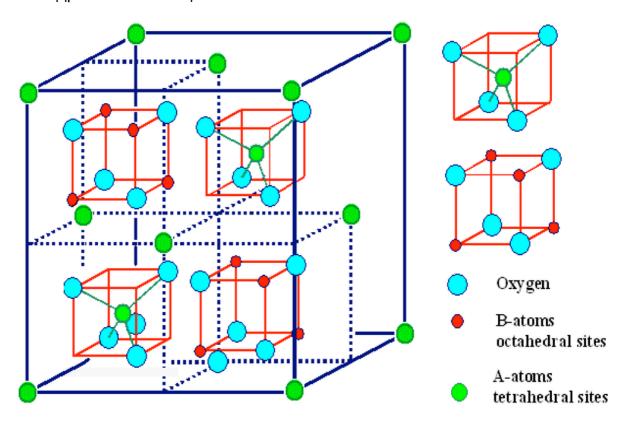
Оглавление

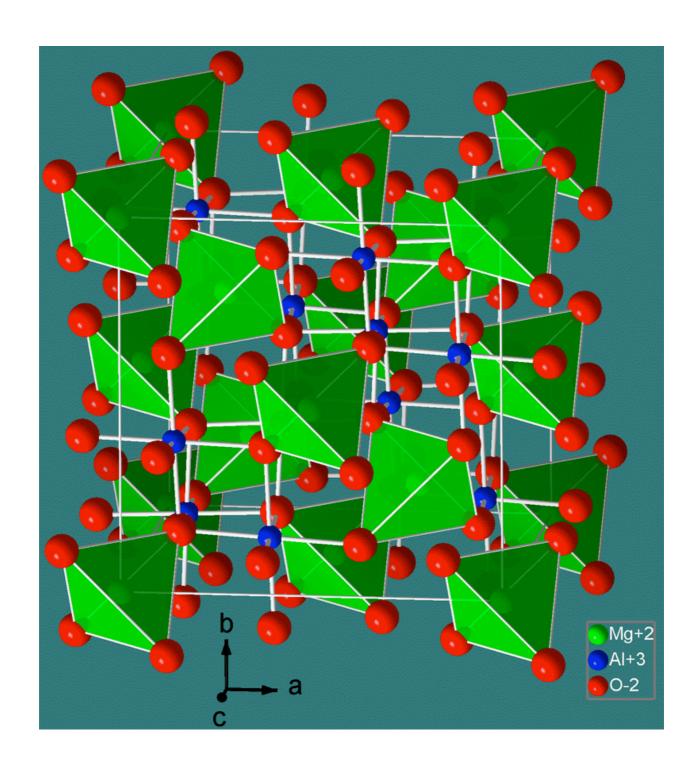
І.Цели и задачи

II.Обзор литературы:

- 1. Шпинели и родственные соединения
- 2.Структура шпинели
- 3.Общие свойства
- 4.План работы
- III. Экспериментальная часть:
- 1.Синтез прекурсоров
- 1.1. Синтез цинкаммонийного шенита
- 1.2.Синтез хромоаммонийных квасцов
- 2.Синтез шпинелей
- 2.1. Методы синтеза
- 2.2. Синтез шпинелей
- 3.РФА
- IV.Заключение. Результаты и выводы
- **V.Список литературы**
- VI.Благодарности

І.Цели и задачи


Цели:


- получить начальные навыки и опыт, необходимые для последующих практикумов, а так же работ в лабораториях
- научиться работать в коллективе
- научиться обрабатывать результаты рентгенофазового анализа **Задачи:**
- изучить химический состав шпинелей и их кристаллическую структуру
- получить разные виды шпинелей с разными степенями замещения
- исследовать зависимость цвета образцов от степени замещения
- исследовать зависимость параметра решетки от степени замещения

II.Обзор литературы

1.Шпинели и родственные соединения

Шпинели (нем. spinell) образуют большой класс соединений, чьи кристаллические структуры родственны собственно минералу шпинели $MgAl_2O_4$. Общая формула AB_2X_4 ; кристаллизуясь в кубической сингонии, образует в основном октаэдрические кристаллы. В элементарной ячейке структуры шпинели - 32 аниона кислорода образуют плотнейшую кубическую упаковку с 64 тетраэдрическими пустотами (катионами занято 8) и 32 октаэдрическими (катионами занято 16), т.е. Формулу можно представить в виде $A_8B_{16}O_{32}$. В структуре нормальной шпинели 8 атомов металла A занимают тетраэдрические позиции, а 16 атомов металла В — октаэдрические позиции.

2.Структура шпинели

По характеру распределения катионов в занятых тетраэдрических и октаэдрических позициях структуры выделяют:

- нормальные (8 тетраэдров занято катионами A^{2+} ,16 октаэдров катионами B^{3+});
- обращенные (8 тетраэдров занято B^{3+} , 16 октаэдров 8 B^{3+} и 8 A^{2+} , причём катионы B^{3+} и A^{2+} в октаэдрических пустотах могут распределяться как статистически, так и упорядоченно);
- промежуточные шпинели.

Нормальная структура свойственна $ZnFe_2O_4$, $FeAl_2O_4$, (Mn, Fe) Al_2O_4 и др. Обращенная структура характерна для Fe_3O_4 , $MgFe_2O_4$, Fe_2TiO_4 и др. Известно большое число минералов с промежуточным типом структуры. К структурному типу шпинели относятся структуры некоторых сульфидов состава RX_2S_4 , где R^{2+} - Co, Ni, Fe, Cu, a X^{3+} - Co, Ni, Cr.

Два фактора определяют, какие комбинации атомов могут привести к образованию структуры типа шпинели:

- а) общий формальный катионный заряд;
- б) относительные размеры двух катионов по сравнению друг с другом и санионом.

Шпинели представляют собой системы твёрдых растворов с широко развитым изоморфизмом катионов A и B. В зависимости от преобладания катиона В различают:

- алюмошпинели (собственно шпинель $MgAl_2O_4$, герцинит $FeAl_2O_4$, галаксит $MnAl_2O_4$, ганит $ZnAl_2O_4$);
- ферришпинели (магнезиоферрит $MgAl_2O_4$, магнетит Fe_3O_4 , якобсит $MnFe_2O_4$, франклинит $ZnFe_2O_4$, треворит $NiFe_2O_4$);
- хромшпинели (хромит $FeCr_2O_4$, магнезиохромит $MgCr_2O_4$);
- титаношпинели (ульвешпинель Fe_2TiO_4 , магнезиальный аналог ульвешпинели Mg_2TiO_4);
- ванадиошпинели (кульсонит FeV₂O₄).

3.Общие свойства

Для всех минералов характерны высокая твердость (5-8 по минералогической шкале твёрдости - шкале Мооса), отсутствие спайности, химическая и термическая устойчивость.

Шпинели - основные носители магнитных свойств горных пород. Плотность, отражательная способность, твёрдость, параметр элементарной ячейки, магнитные и электрические свойства существенно зависят от состава и характера распределения катионов и заметно колеблются в пределах каждой группы. Для всех шпинелей характерны высокотемпературные условия образования, а в поверхностных условиях они устойчивы к выветриванию и сохраняются в россыпях.

Многие шпинели - важные руды хрома, железа, марганца, титана, цинка; применяются при производстве керамики, огнеупоров, термоустойчивых красок.

4.План работы.

Можно выделить несколько крупных этапов работы, необходимых для достижения поставленных целей:

- Сбор информации о предстоящем синтезе из различных источников.
- Синтез прекурсоров, в частности $(NH_4)_2Zn(SO_4)_2 \cdot 6H_2O$ и $NH_4Cr(SO_4)_2 * 12H_2O$.
- Синтез целевых продуктов.
- Анализ полученных веществ различными методами.

В качестве целевых продуктов были определены шпинели $ZnAl_2O_4$ с частичным замещением атомов алюминия на атомы хрома.

III.Экспериментальная часть

1.Получение прекурсоров.

Исходя из наличия реактивов, знаний и оборудования в практикуме, было принято

решение попробовать следующие методы синтеза целевых веществ:

- Гомогенизация расплавом на воздуходувной горелке.
- Химическое соосаждение (гидрокарбонатное).

Для всех трех перечисленных методов синтеза в качестве реагентов можно использовать квасцы и шениты.

Итак, было необходимо получить достаточное для дальнейшего синтеза количество алюмоаммонийных и хромаммонийных квасцов, а также цинкаммонийного шенита.

Алюмоаммонийные квасцы было решено не синтезировать в связи с наличием больших запасов в практикуме.

1.1. Синтез цинкаммонийного шенита.

Методика получения. Наблюдения. Расчёты.

Для получения использовался насыщенный при комнатной температуре раствор $ZnSO_4$ и кристаллический $(NH_4)_2SO_4$. Взяли около 40 мл раствора $ZnSO_4$. При 80 градусах Цельсия был приготовлен насыщенный раствор сульфата аммония, к нему прилили насыщенный раствор $ZnSO_4$. После сливания начал выпадать белый осадок шенита. (Приливали раствор $ZnSO_4$ к раствору $(NH_4)_2SO_4$). Затем охлаждали в кристаллизаторе с холодной водой при постоянном помешивании стеклянной палочкой. После этого осадок отфильтровали на водоструйном насосе ,промыли и оставили сушиться при комнатной температуре. После высыхания получился блестящий порошок шенита, белого цвета.

Расчёт вёлся на 45 г целевого продукта:

	ZnSO ₄	(NH ₄) ₂ SO ₄	(NH ₄) ₂ Zn(SO ₄) ₂ ·6H ₂ O
Молярная масса г/моль	161	132	401
Количество, моль	0,112	0,112	0,112
Масса, г	18,07	14,81	45

Таблица 1. Результаты расчета реагентов и продукта для синтеза цинкаммонийных шенитов.

Уравнение реакции:

$$ZnSO_4+(NH_4)_2SO_4+6H_2O \rightarrow (NH_4)_2Zn(SO_4)_2 \bullet 6H_2O$$

Теоретические данные:

 $S((NH_4)_2SO_4)=94,1$ г (при 80 °C) $S_1(ZnSO_4)=67,2$ г (при 80 °C) $S_2(ZnSO_4)=54,1$ г (при 20 °C)

Расчеты:

Рассчитаем массу p-pa ZnSO₄, необходимого для получения шенита:

$$m(ZnSO_4)/m(p-pa(ZnSO_4)) = S_2(ZnSO_4)/(S_2(ZnSO_4)+100) = \omega(ZnSO_4)$$

$$m(p-pa(ZnSO_4))= 18,07/\omega(ZnSO_4)= 51,47 г$$
 (приблизительно 40 мл p-pa)

Рассчитаем объём воды, необходимой для приготовления горячего (при 80° C) раствора (NH_4)₂SO₄, зная массу (NH_4)₂SO₄:

Выход:

После фильтрования и высушивания получили 30,81г (NH_4) $_2$ Zn(SO_4) $_2\cdot 6H_2O$. Выход составил примерно 68,47%. Небольшой выход хромоаммонийных квасцов может быть объяснен неполной кристаллизацией из раствора и потерями при промывании.

1.2.Синтез хромоаммонийных квасцов

Методика получения. Наблюдения. Расчеты.

В качестве исходных веществ для получения хромоаммонийных квасцов были взяты: дихромат аммония ((NH_4)₂ Cr_2O_7); этиловый спирт (C_2H_5OH); концентрированная серная кислота (H_2SO_4); дистиллированная вода.

В стакан объёмом 50 мл налили 30 мл дистиллированной воды и растворили 7,91 г дихромата аммония при комнатной температуре. При растворении раствор немного охладился. Получили прозрачный раствор оранжевого цвета. При комнатной температуре растворился не весь дихромат аммония (из-за охлаждения). Полученный раствор поставили в кристаллизатор с холодной водой, и прилили тонкой струйкой в полуторном избытке (по сравнению с теоретическими расчетами) концентрированную серную кислоту (под тягой). При этом раствор сильно нагрелся, не растворившийся в воде дихромат аммония растворился. Раствор приобрел красно-оранжевую окраску. Охладили смесь дихромата аммония с серной кислотой в кристаллизаторе, сменили воду (в кристаллизаторе) на холодную, и, не вынимая стакан с раствором из кристаллизатора, стали медленно, по каплям приливать (при перемешивании) к раствору спирт (температура реакции не должна превышать 40°С).

После завершения реакции раствор приобрел зеленую окраску (обусловленную ионами Cr^{3+}). В ходе этого процесса ощущался характерный запах продуктов окисления спирта, ацетальдегида (прелых яблок) и уксусной

кислоты. При приливании спирта раствор сильно нагревался, воду в кристаллизаторе пришлось менять несколько раз. Спустя некоторое время из раствора стали выпадать мелкие фиолетовые кристаллы. Через 6 дней количество выпавших кристаллов увеличилось. Раствор с кристаллами был отфильтрован на водоструйном насосе с использованием стеклянного фильтра и промыт, сначала небольшим количеством дистиллированной воды, а затем 70% спиртом (чтобы кристаллы быстрее высохли и не потеряли кристаллизационную воду). Кристаллы были оставлены в фарфоровой чашке, закрыты фильтровальной бумагой и оставлены сушиться при комнатной температуре. Спустя день кристаллы высохли. Сухие квасцы имели бледнофиолетовый цвет.

	(NH ₄) ₂ Cr ₂ O ₇	H ₂ SO ₄	C₂H₅OH	NH ₄ Cr(SO ₄) ₂ ·12H ₂ O
Молярная	252	98	46	478
масса				
г/моль				
Количество,	0,0314	0,126	0,0941	0,0628
моль				
Масса, г	7,91	12,35	4,33	30
Пересчет в		Teop. – 6,7	Teop. – 5,4	
объем, мл		Взято – 10	Взято - 10	

Уравнение реакции:

 $(NH_4)_2Cr_2O_7+3CH_3CH_2OH+4H_2SO_4+17H_2O \rightarrow 2NH_4Cr(SO_4)_2 \bullet 12H_2O \downarrow +3CH_3COH \uparrow$ Теоретические данные:

 $M(H_2SO_4)=98г/моль$ $M(CH_3CH_2OH)=46 г/моль$ $M((NH_4)_2Cr_2O_7=252г/моль$ $M(NH_4Cr(SO_4)_2*12H_2O)=478г/моль$

 $\rho(H_2O)=1$ г/мл $\rho(H_2SO_4)=1,84$ г/мл $\rho(CH_3CH_2OH)=0,79$ г/мл $S((NH_4)_2Cr_2O_7)=35,6$ г на 100мл H_2O

Расчеты:

 $m((NH_4)_2Cr_2O_7)=7,91$ г $n((NH_4)_2Cr_2O_7)=0,0314$ моль $m(H_2O)=30$ г (для растворения $(NH_4)_2Cr_2O_7)$ $V(H_2O)=30$ мл

 $n(H_2SO_4)=0,126$ моль (по уравнению реакции) $n(CH_3CH_2OH)=0,0941$ моль $n(H_2SO_4)=0,188$ моль (с учетом избытка) $n(CH_3CH_2OH)=0,174$ моль

(с учетом избытка)

 $m(H_2SO_4)=18,42$ г (с учетом избытка) $m(CH_3CH_2OH)=8,004$ г (с учетом избытка) $V(H_2SO_4)=10$ мл (с учетом избытка)

 $n(H_2O)$ = 0,534 моль $m(H_2O)$ = 9,61 г

 $V(H_2O)$ = 9,61 мл (по реакции)

 $n(NH_4Cr(SO_4)_2*12H_2O) = 0,0628$ моль

 $m(NH_4Cr(SO_4)_2*12H_2O)=30$ Γ

Было получено 22,8 г хромоаммонийных квасцов.

Выход продукта составил 76%.

2.Синтез шпинелей.

2.1. Методы синтеза.

2.1.1. «Сухой» метод синтеза.

Суть этого метода синтеза заключается в том, что прекурсоры при нагревании разлагаются до оксидов металлов. Для достижения лучшей гомогенизации, смеси полученных веществ взятые в стехиометрических количествах были перетерты в ступке. Затем смесь прекурсоров подвергалась термической обработке:

1) На газовой горелке; 2) На воздуходувной горелке; 3) В высокотемпературной печи.

Формальное уравнение реакции синтеза:

- 1. $(NH_4)_2Zn(SO_4)_2 \cdot 6H_2O + xNH_4Cr(SO_4)_2 \cdot 12H_2O + (2-x)NH_4Al(SO_4)_2 \cdot 12H_2O \rightarrow ZnAl_2$ $_xCr_xO_4 + 4NH_3 \uparrow + 32H_2O \uparrow + 6SO_2 \uparrow + 3O_2 \uparrow$
- 1.Смесь прокаливалась в фарфоровом тигле на газовой горелке под тягой, до прекращения выделения газов (выделялся белый дым, который был заметен невооруженным глазом). При нагревании смесь плавилась, из-за большого количества кристаллизационной воды содержащейся в исходных шенитах. После прекращения выделения газов тигель охлаждали, а затем перетирали содержимое в ступке и засыпали получившийся порошок в алундовый тигель. Потеря массы после данного этапа термической обработки соответствовала полной потере кристаллизационной воды, полному разложению сульфата аммония и частичному разложению сульфатов металлов.
- 2. Далее смесь прокаливалась в алундовом тигле на воздуходувной горелке. Прокаливание проводили под тягой до тех пор, пока не прекращалось выделение газов и изменение цвета образца. После прокаливания образцы снова перетирали в ступке (для лучшей гомогенизации).
- 3. После следовал обжиг в высокотемпературной печи при 1200 градусах.

2.1.2 «Мокрый» способ синтеза.

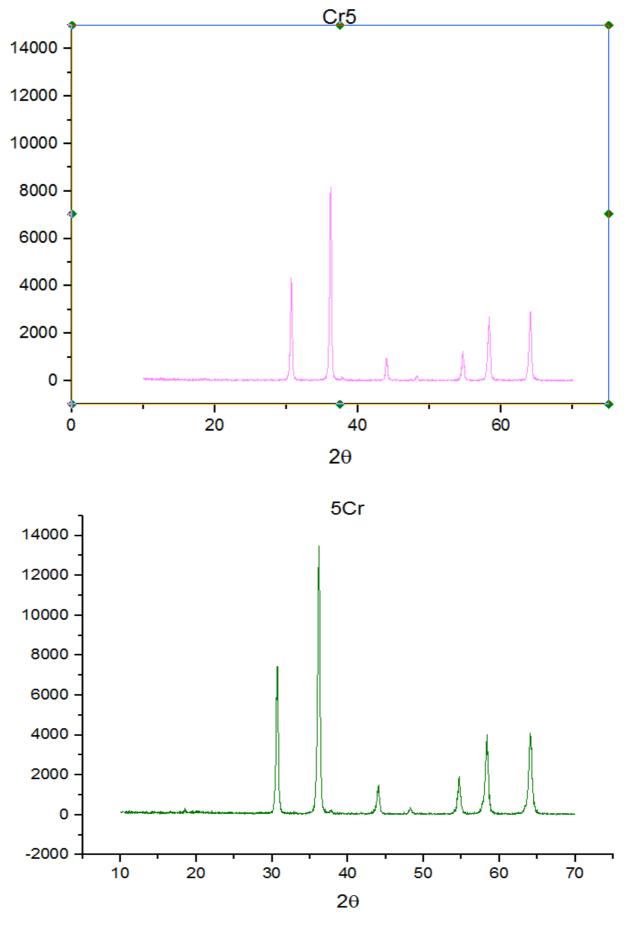
Соосаждение с гидрокарбонатом натрия.

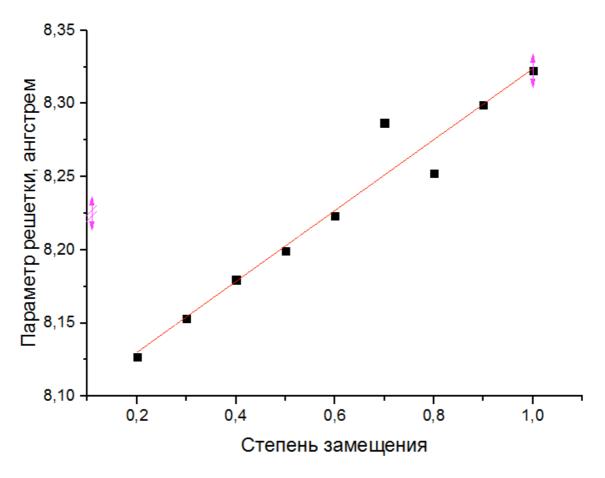
В кипящую воду при перемешивании на магнитной мешалке высыпали перемешанную стехиометрическую смесь прекурсоров и рассчитанного количества сухого гидрокарбоната натрия. Выпадал хлопьевидный осадок гидроксидов. Затем осадок декантировали до полного удаления карбонат- и сульфат-ионов из раствора. Наличие сульфат- и карбонат-анионов? (каким образом?) в растворе проверяли проводя качественную реакцию с хлоридом бария (при наличии данных анионов наблюдалось выпадение белого осадка). Когда пробный раствор не давал помутнения с хлоридом бария ,осадок фильтровали на бумажном фильтре. После фильтр с осадком сушили в сушильном шкафу до полного высыхания. Затем смесь тщательно перетирали в ступке и отжигали в фарфоровом тигле на газовой горелке. Получившуюся смесь повторно перетирали и отжигали в печи.

Формальные уравнения реакций синтеза:

- 1.(NH₄)₂Zn(SO₄)₂ •6H₂O + 2NaHCO₃ → Zn(OH)₂ \downarrow + 2CO₂ \uparrow + Na₂SO₄ + (NH₄)₂SO₄ + 6H₂O
- 2. $2(NH_4)AI(SO_4)_2 \cdot 12H_2O + 6NaHCO_3 \rightarrow 2AI(OH)_3 \downarrow + 6CO_2 \uparrow + 3Na_2SO_4 + (NH_4)_2SO_4 + 12H_2O$
- 3. $2(NH_4)Cr(SO_4)_2 \cdot 12H_2O + 6NaHCO_3 \rightarrow 2Cr(OH)_3 \downarrow + 6CO_2 \uparrow + 3Na_2SO_4 + (NH_4)_2SO_4 + 12H_2O$
- 4. $Zn(OH)_2$ → $ZnO + H_2O$ ↑
- 5. 2AI (OH)₃ → AI₂O₃ + 3H₂O↑
- 6. $2Cr(OH)_3$ → $Cr_2O_3 + 3H_2O$ ↑

	(NH ₄) ₂ Zn(SO ₄) ₂ •6H ₂ O,г	(NH ₄)Al(SO ₄) ₂ •12H ₂ O,г	(NH ₄)Cr(SO ₄) ₂ •12H ₂ Ο,Γ	NаНСО₃, г	
$\overline{ZnAl_{1,9}Cr_{0,1}O_4}$	1,08	2,32	0,13	0	
ZnAlCrO ₄	0,96	1,09	1,15	0	
ZnCr ₂ O ₄	0,86	0	2,05	0	
Расчёты данных 3 шпинелей были на 0,5 г целевого продукта					
ZnAl _{1,8} Cr _{0,2} O ₄	1,28	2,6	0,3	3,08	
$ZnAl_{1,6}Cr_{0,4}O_4$	1,25	2,25	0,59	3,01	
$ZnAl_{1,4}Cr_{0,6}O_4$	1,22	1,92	0,87	2,93	
ZnAl _{1,2} Cr _{0,8} O ₄	1,19	1,61	1,13	2,86	
ZnAlCrO ₄	1,15	1,31	1,38	2,8	
$\overline{ZnAl_{0,8}Cr_{1,2}O_{4}}$	1,13	1,02	1,62	2,73	
$\overline{ZnAl_{0,6}Cr_{1,4}O_{4}}$	1,1	0,75	1,84	2,66	
$\overline{ZnAl_{0,4}Cr_{1,6}O_{4}}$	1,08	0,49	2,06	2,6	
ZnAl _{0,2} Cr _{1,8} O ₄	1,06	0,24	2,26	2,55	
Расчёты данных 9 шпинелей были на 0,6 г целевого продукта					


	Macca	Выход от	Приблизительный		
	продукта, г	теоретического, %	цвет		
«Сухой» метод					
$ZnAl_{1,9}Cr_{0,1}O_4$	0,46	92			
ZnAlCrO ₄	0,4	80			
ZnCr ₂ O ₄	0,46	92			
	«Мокрый» метод				
$ZnAl_{1,8}Cr_{0,2}O_4$	0,3	50			
$ZnAl_{1,6}Cr_{0,4}O_4$	0,44	73			
$ZnAl_{1,4}Cr_{0,6}O_4$	0,48	80			
$ZnAl_{1,2}Cr_{0,8}O_4$	0,45	75			
ZnAlCrO ₄	0,4	67			
$ZnAl_{0,8}Cr_{1,2}O_4$	0,44	73			
$ZnAl_{0,6}Cr_{1,4}O_4$	0,5	83			
$ZnAl_{0,4}Cr_{1,6}O_4$	0,4	67			
$ZnAl_{0,2}Cr_{1,8}O_4$	0,5	83			


Обработка экспериментальных данных.

Рентгенофазовый анализ образцов.

Образцы шпинелей со степенью замещения хромом (x=0,1 0,2 0,3 0,4 0,5 0,6 0,8 0,9 1) были отправлены на рентгенофазовый анализ (далее РФА). По данным этого эксперимента, было выяснено, сколько фаз присутствует в образцах и какие они. Данные были обработаны в программе WinXPow. Так же данные РФА помогут в сравнении двух методов: «сухого» и «мокрого».

Далее показаны рентгеннограммы двух образцов с одинаковой степенью замещения. (x=0,5). Сиреневый график-ренгенограма обазца полученного «мокрым» способом. Зеленый график-рентгенограмма образца полученного «сухим» способом.

По графику зависимости параметра решетки от степени замещения видно, что линейная зависимости соблюдается с долей погрешности. Следовательно ,соблюдается и закон Вегарда.

3.Результаты.

На рентгенограммах полученых образцов не было обнаруженно присутствия других фаз, кроме шпинели. Некоторые пики становились совсем незаметными, почти сливались с шумом, но это можно объяснит тем, что интенсивнось образцов различная при одинаковых углах.

Параметр элементарно рештки возрастал примерно линейно, следовательно выполнялся закон Вегарда, и образцы действительно однофазные, как это было сказанно в предыдущем пункте. Если бы присутствовала другая фаза, то на графике бы образовалось плато, и это означало бы, что больше не может происходить замещение. (или образец недоотожжен)

Так же была получена зависимость цвета образца от содержания дапирующего агента: от бледно-розового с содржанием хрома x=0,05 до зеленого, где x=1.

Мы не смогли выбрать, какой метод лучше подходит для гомогенизации прекурсоров данной шпинели:оба занимают одинаковое время, но «мокрый» метод можно проводить без использования воздуходувной горелки, которая присутствовала на практикуме в количестве одного экземпляра.

<u>IV.Выводы.</u>

- 1) Цвет данной шпинели зависит от количества хромофора в ней.
- 2) Два способа синтеза шпинелей примерно одинаковы по выходу и времени, следует выбирать тот, для проведения которого все приборы доступны.
- 3) Параметр решетки зависит от количества дапирующего агента.

Вести журнал для себя!

<u>V.Список литературы.</u>

- 1. Хинней Н. Химия твердого тела. Изд. «Мир», 1971
- 2. Б.Ф. Ормонт Введение в физичесую химию и кристаллохимию полупроводников. Изд. «Высшая школа» ,1982
- 3. Практикум по химии. Под редакцией Ю. Д. Третьякова
- 4. «Начала химического эксперимента» Д. О. Чаркин, А. И. Баранов, П. С. Бердоносов ,изд. ФНМ 2007

<u>VI.Благодарности</u>.

Хотим поблагодарить за ценные советы в практикуме Жирова Александра Ивановиа, Брылева Олега Александровича и Смирнова Евгения Васильевич. За помощь с РФА отдельная благодарность Тарасову Алексею Борисовичу.