Московский Государственный Университет имени М.В. Ломоносова Факультет Наук о Материалах

Отчёт по десятинедельному практикуму Синтез и исследование шпинели состава $Mg_xNi_{(1-x)}Al_2O_4$, системы Al_2O_3 -NiO, $Mg_{(1-x)}Co_xO$ и рубина $(Cr_xAl_{(2-x)})_2O_3$

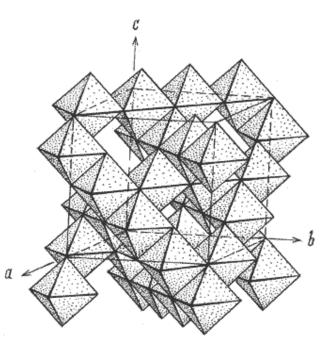
Выполнили: студенты 1 курса Тастекова Элина Рулев Алексей Научные руководители: Жиров Александр Иванович Брылев Олег Александрович Гаршев Алексей Викторович Григорьева Анастасия Вадимовна

2012

Содержание:

١.	Цель	2
II.	Задачи	2
III.	Литературный обзор	2
IV.	Практическая часть	4
V.	Выводы	13
VI.	Заключение	19

I Цель:


Получение благородной шпинели с замещенным атомом Mg состава $Mg_{1-x}Ni_xAl_2O_4$, а так же получение твердых растворов оксидов состава $(Cr_xAl_{1-x}O_3, Mg_xCo_{1-x}O_4, O_4, O_5)$ с различными количественными соотношениями заместителей, а так же анализ их свойств.

II Задачи:

- 1. Изучить структуру и свойства шпинели и твердых растворов оксидов указанных составов;
- 2. Синтезировать твердые растворы указанного состава
- 3. Рассмотреть изменение цвета в зависимости от количественного соотношения компонентов твердых растворов
- 4. По результатам рентгенофазового анализа определить фазовый состав полученного вещества, определить наличие твердых растворов
- 5. Определить, насколько изменился параметр ячейки в зависимости от количественного состава смеси по результатам РФА
- 6. Исследовать чистоту полученных соединений
- 7. Приобрести необходимые навыки работы в лаборатории

III Литературный обзор

Шпинели и родственные соединения

Шпинели (нем. Spinell), шпинелиды, группа минералов класса сложных окислов с общей формулой АВ₂О₄ или A (A, B) O₄, где A—Mg, Zn, Mn, Fe²⁺, Со, Ni; B—Al, Fe^{3+} , Cr, Mn, Ti^{4+} , V^{3+} . Ш. представляют собой системы твёрдых растворов с широко развитым изоморфизмом катионов А и В. В зависимости от преобладания катиона В различают: алюмошпинели [шпинель MgAl₂O₄, герцинит $FeAl_2O_4$, галаксит (Mn, Fe) Al_2O_4 , ганит $ZnFe_2O_4$], ферришпинели (магнезиоферрит MgAl₂O₄, магнетит,якобсит MnFe2O4, франклинит ZnFe $_2$ O $_4$,

треворит), хромшпинелиды, титаношпинели (ульвешпинель, магнезиальный аналог ульвешпинели MgTiO $_4$ и др.) и ванадиошпинели (кульсонит FeV $_2$ O $_4$). В пределах каждого изоморфного ряда смесимость минералов полная, а между членами различных рядов — ограниченная. Кристаллизуются в кубической системе, образуя в основном октаэдрические кристаллы. В элементарной ячейке структуры Ш. 32 аниона кислорода образуют плотнейшую кубическую упаковку с 64 тетраэдрическими пустотами (катионами занято 8) и 32 октаэдрическими (катионами занято 16). По характеру распределения катионов в занятых тетраэдрических и октаэдрических позициях структуры выделяют: нормальные (8 тетраэдров занято катионами A^{2+} , 16 октаэдров — катионами B^{3+}), обращенные (8 тетраэдров занято B^{3+} , 16 октаэдров — 8 B^{3+} и 8 A^{2+} , причём катионы B^{3+} и A^{2+} в октаэдрических пустотах могут распределяться как статистически, так и упорядоченно) и промежуточные Ш. Нормальная структура свойственна MgAl $_2$ O $_4$, ZnFe2O4, FeAl2O4, (Mn, Fe) A12O4 и др. Обращенная структура характерна для FeFe2O4, MgFe2O4, Fe2TiO4 и др. Известно большое число минералов с промежуточным типом структуры. К структурному типу Ш. относятся структуры некоторых сульфидов состава RX2S4, где R2+— Co, Ni, Fe, Cu, a X3+ —Co, Ni, Cr. Искажённую структуру Ш. имеет маггемит (g-Fe2O3).

Для всех минералов характерны высокая твердость (5—8 по минералогической шкале), химическая и термическая устойчивость. Ш. — основные носители магнитных свойств горных пород. Плотность, отражательная способность, твёрдость, параметр элементарной ячейки, магнитные и электрические свойства существенно зависят от состава и характера распределения катионов и заметно колеблются в пределах каждой группы. Для Ш. характерны высокотемпературные условия образования; к выветриванию устойчивы, сохраняются в россыпях. Многие Ш. —важные руды хрома, железа, марганца, титана, цинка; применяются при производстве керамики, огнеупоров, термоустойчивых красок.

Закон Вегарда — апроксимированное эмпирическое правило, которое гласит, что существует линейная зависимость при постоянной температуре между свойствами кристаллической решётки сплава и концентрацией отдельных его элементов. Согласно закону Вегарда, в нашей работе с изменением концентраций элементов в шпинелях и твердых растворах мы должны получить линейную зависимость параметра решетки от концентрации

IV Практическая часть

Синтез Mg_xNi_(1-x)Al₂O₄

Шпинель была синтезирована механическим способом, основанным на том, что прекурсоры при нагревании разлагаются до оксидов. Прекурсоры, взятые со стехиометрическими коэффициентами, были перетерты в ступке для достижения лучшей гомогенизации. Затем смесь подверглась термической обработке сначала на обычной горелке, потом на воздуходувной горелке, а следующим этапом стала печь. Смесь прокаливалась под тягой в фарфоровом

тигле на обычной горелке до полного прекращения выделения белого дыма. При нагревании смесь плавилась, так как в прекурсорах содержалось много воды. При этом смесь меняла свой цвет, из белого превращаясь в зеленый, а потом в желтый цвет. После рекращения выделения белого дыма смесь охлаждали и перетирали в ступке. После взвешивания масса уменьшилась, так как ушла вся кристаллизационная вода, полностью разложился сульфат аммония и начали разлагаться сульфаты металлов.

Для дальнейшего разложения сульфатов понадобилась воздуходувная горелка. Смесь нагревали в алундовом тигле до полного прекращения выделения газов. После прогревания смесь опять перетирали для лучшей гомогенизации.

После прогрева на воздуходувной горелке смесь в алундовом тигле отправили в печь на 900 градусов, а потом на 1200.

Уравнения синтеза:

$(1-x)(NH4)2Ni(SO4)2\cdot 6H2O+xNH4Mg(SO4)2\bullet 6H2O+2NH4Al(SO4)2\cdot 12H2O=$ $Mg_xNi_{(1-x)}Al_2O4+4NH3\uparrow + 36H2O\uparrow + 6SO2\uparrow + 3O2\uparrow$

Химические способы синтеза:

Соосаждение с гидрокарбонатом натрия.

Смесь прекурсоров перетерли, смешали с содой, взятой в избытке на

20-25 процентов для создания кислой среды. В кипящую воду на магнитной мешалке порциями всыпать смесь прекурсоров с гидрокарбонатом натрия. При охлаждении стакана выпадают голубые хлопья гидроксидов. После осаждения хлопьев нужно промыть (декантировать) горячей дистиллированной водой до полного удаления карбонат- и

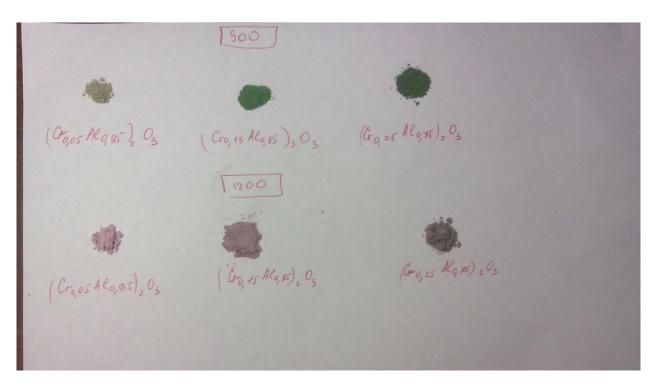
сульфат-ионов из раствора. Наличие анионов проверяли качественной реакцией

на карбонат- и сульфат-анионы при помощи хлорида или нитрата бария, при этом раствор мутнел и выпадал белый осадок. Когда

помутнение перестало происходить, то раствор над осадком гидроксидов сливали, остаток фильтровали на бумажном фильтре. После этого фильтровальную бумагу с осадком клали в сушильный шкаф до высыхания. Высохший осадок перетирали в ступке, взвешивали и прокаливали в фарфоровом тигле на горелке до прекращения изменения цвета с голубого цвета на черный цвет (или темно-коричневый). После этого смесь еще раз перетирали и отправляли на отжиг в печь на 900 и 1200 градусов. Полученные образцы были отправлены на рентгенофазовый анализ. Результаты были в дальнейшем обработаны.

Уравнения реакций:

Синтез рубина $(Cr_xAl_{(2-x)})_2O_3$

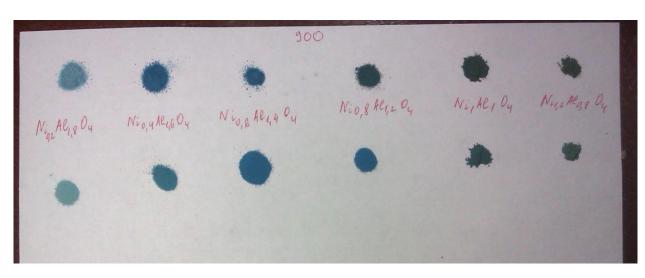

 $2(NH4)AI(SO4)2 \cdot 12H2O + 6NaHCO3 = 2AI(OH)3 \downarrow + 6CO2 \uparrow + 3Na2SO4 +$

(NH4)2SO4+ 12H2O

 $2(NH4)Cr(SO4)2 \cdot 12H2O + 6NaHCO3 = 2Cr(OH)3 \downarrow + 6CO2 \uparrow + 3Na2SO4 + (NH4)2SO4 + 12H2O$

2AI (OH)3 =AI2O3+3H2O个

2Cr(OH)3=Cr2O3+3H2O个



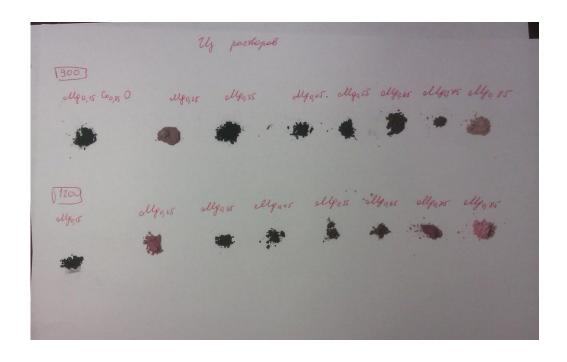
Синтез системы Al_2O_3 -NiO:

(NH4)2Ni(SO4)2 •6H2O + 2NaHCO3= Ni(OH)2↓ + 2CO2↑ + Na2SO4 + (NH4)2SO4 +6H2O

2AI (OH)3 =AI2O3+3H2O个

Ni(OH)2=NiO+ H2O↑

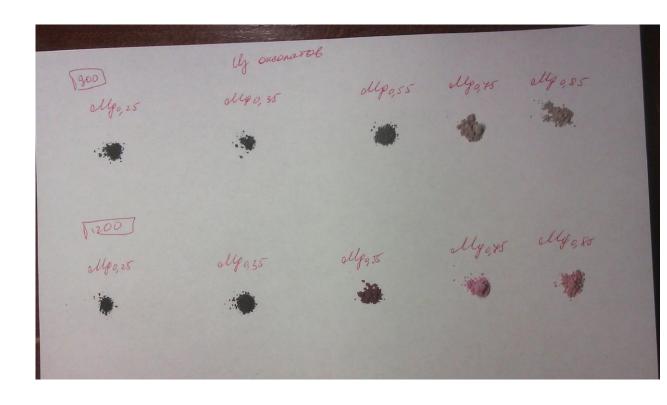
Соосаждение с оксалатом аммония.


Получение системы $Mg_{(1-x)}Co_xO$:

При получении данной системы мы пользовались двумя способами: осаждение системы из растворов оксалатов и получение прекурсоров (оксалат магния и кобальта), а затем их прокаливание на горелке.

Рассмотрим первый способ. Для этого нужно сделать насыщенные растворы шенитов магния и кобальта, взятых стехиометрически, и оксалат аммония. Горячие насыщенные растворы слить, сразу заметно выпадение осадка оксалатов магния и кобальта. Осадок отфильтровать на стеклянном фильтре, сначала промывая его дистиллированной водой, а затем небольшим количеством спирта. Высушенный осадок переносили в фарфоровый тигель и прокаливали до прекращения выделения газа и изменения цвета. Из

фарфорового тигля смесь переносили в алундовый тигель и ставили в печь на 900 и 1200 градусов.


Второй способ. Нужно получить отдельно оксалат магния и отдельно оксалат кобальта. А потом навесить нужное количество оксалатов и также прокалить на горелке и далее в печи на 900 и 1200. Так образцы получались намного чище, и цвет был более выражен. Заметьте изменение цвета после сливания растворов оксалатов на фотографиях, представленных ниже.

Уравнения реакций:

 $1.(1-x)(NH4)2Co (SO4)2*6H2O + x(NH4)2 Mg (SO4)2*6H2O + (NH4)2C2O4 = (1-x)ZnC2O4 \[\psi + xCoC2O4 \[\psi + 2(NH4)2SO4 + 6H2O \]$

- 2. MgC2O4=MgO+ CO个+ CO2个
- 3. CoC2O4=CoO+ CO↑+ CO2↑

Результаты:

Синтез $Mg_xNi_{(1-x)}Al_2O_4$

Х	Способ	m _{теор}	m _{прак}	Вы-
	гомогенизации	, г	т, Г	ход, %
0,1	сплавле-	0,7	0,62	88,5
	ние			
0,3	сплавле-	0,7	0,67	96,2
	ние		4	8
0,5	сплавле-	0,7	0,67	95,7
	ние			
0,7	сплавле-	0,7	0,66	94,2
	ние			8
0,9	сплавле-	0,7	0,68	98,2
	ние		8	8

Синтез $(Cr_xAl_{(2-x)})_2O_3$

Х	Способ	m _{теор}	m _{прак}	Вы-
	гомогенизации	, г	т, Г	ход, %
0,05	соосажд.	0,5	0,48	96

	c NaHCO ₃			
0,15	соосажд.	0,5	0,49	98
	c NaHCO₃			
0,25	соосажд.	0,5	0,47	95,6
	c NaHCO₃		8	

Синтез $Mg_{(1-x)}Co_xO$

Х	Способ	$m_{ extsf{ treop}}$	m _{прак}	Вы-
	гомогенизации	, г	т, Г	ход, %
0,15	оксалат-	0,3	0,25	83
	ное соосажд.,			
	первый способ			
0,25	оксалат-	0,3	0,28	93,3
	ное соосажд.,			3
	первый спо-			
	соб*			
0,35	оксалат-	0,3	0,27	90
	ное соосажд.,			
	первый способ			
0,45	оксалат-	0,3	0,28	93,3
	ное соосажд.,			3
	первый способ			
0,55	оксалат-	0,3	0,27	92
	ное соосажд.,		6	
	первый способ			
0,65	оксалат-	0,3	0,28	96
	ное соосажд.,		8	
	первый способ			
0,75	оксалат-	0,3	0,29	96,6
	ное соосажд.,			7
	первый способ			
0,85	оксалат-	0,3	0,28	96,3
	ное соосажд.,		9	3
	первый способ			

^{*-}создание насыщенного раствора из шенитов

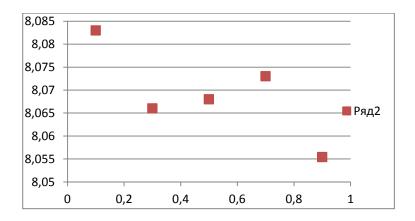
Синтез $Mg_{(1-x)}Co_xO$

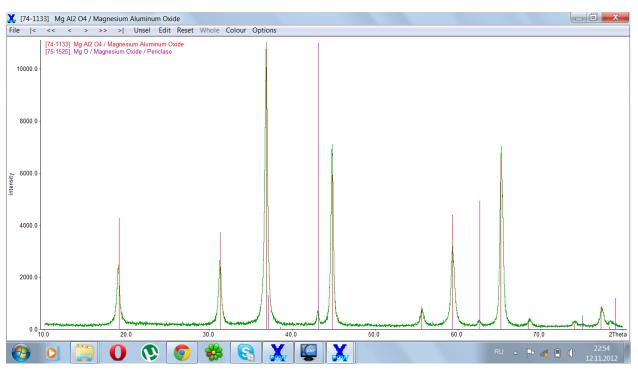
Х	Способ	m _{τeop}	m _{прак}	Вы-
	гомогенизации	, г	т, Г	ход, %
0,25	оксалат-	0,3	0,27	90
	ное со-			
	осаж.,второй			
	способ*			
0,35	оксалат-	0,3	0,28	93,3
	ное со-			3
	осаж.,второй			
	способ*			
0,55	оксалат-	0,3	0,29	96,7
	ное со-			
	осаж.,второй			
	способ*			
0,75	оксалат-	0,3	0,27	92
	ное со-		6	
	осаж.,второй			
	способ*			
0,85	оксалат-	0,3	0,28	95,6
	ное со-		7	6
	осаж.,второй			
	способ*			

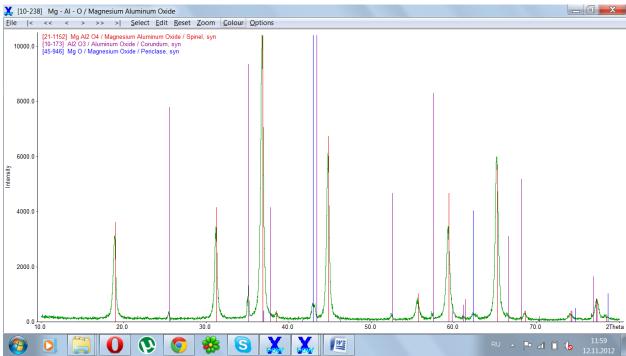
^{* -} создание насыщенного раствора оксалата магния и оксалата кобальта, а затем их сливание.

Синтез Al₂O₃-NiO

Х	Способ	m _{τeop}	m _{прак}	Вы-
	гомогенизации	, г	т, Г	ход, %
0,2	соосаж. с	0,7	0,67	95,7
	NaHCO ₃			1
0,4	соосаж. с	0,7	0,66	96,2
	NaHCO ₃		7	
0,6	соосаж. с	0,7	0,69	98,5
	NaHCO ₃			7
0,8	соосаж. с	0,7	0,68	97,1
	NaHCO ₃			4
1,0	соосаж. с	0,7	0,68	98,2
	NaHCO ₃		8	8
1,2	соосаж. с	0,7	0,67	95,7
	NaHCO ₃			14

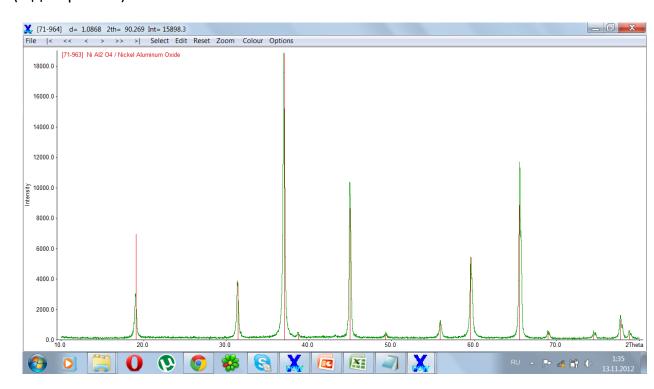

V Выводы:

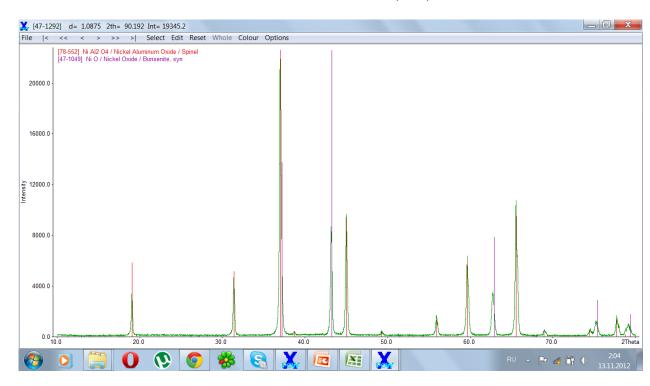

Синтез Mg_xNi_(1-x)Al₂O₄


Мы синтезировали благородную шпинель, в которой замещали никель на алюминий. Изначально планировалось замещать никелем магний, никель должен был встать в тетраэдрические пустоты и цвет шпинели должен был получиться желтым. Но так как шпинель получилась голубой, то никель стал в октаэдр и заместил алюминий. Образцы имеют закономерно усиливающуюся интенсивность цвета. По результатам рентгенофазового анализа можно утверждать, что мы получили благородную шпинель практически без примесей. Вот некоторые из рентгенофазовых диаграмм:

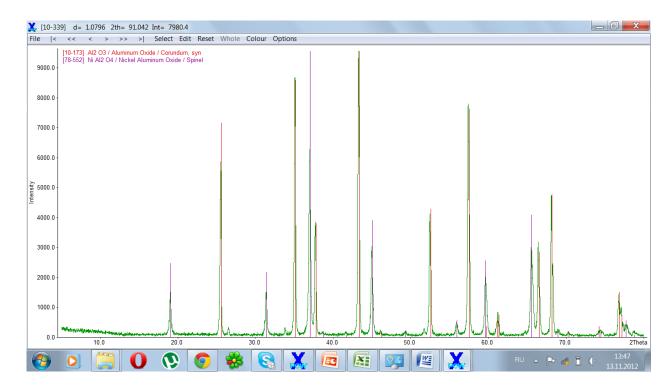
На первой диаграмме представлен образец ${\rm Mg_{0,5}Ni_{0,7}Al_2O_4}$, где основные пики принадлежат благородной шпинели ${\rm MgAl_2O_{4,}}$ а также есть примесные пики оксида магния, который скорее всего до конца не вступил в реакцию. Практически такая же диаграмма и у всех остальных образцов, кроме первого ${\rm Mg_{0,1}Ni_{0,7}Al_2O_4}$, у которого помимо пиков благородной шпинели присутствуют также пики оксида магния и оксида алюминия (см. 2 диаграмму ниже).

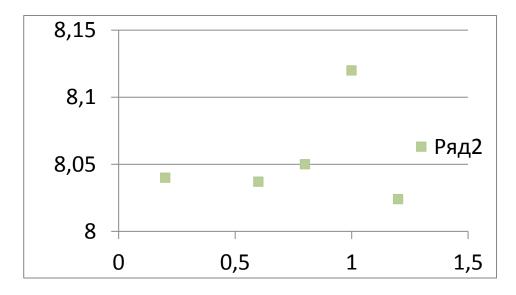
При помощи программы WinXPow мы рассчитали параметры ячеек нашей шпинели и составили график, где видно, что закон Вегарда выполняет только для образцов с X=0,3, 0,5 и 0,7. Образцы с X=0,1 и 0,9 скорее всего вышли из области гомогенизации.




Синтез Al2O3-NiO

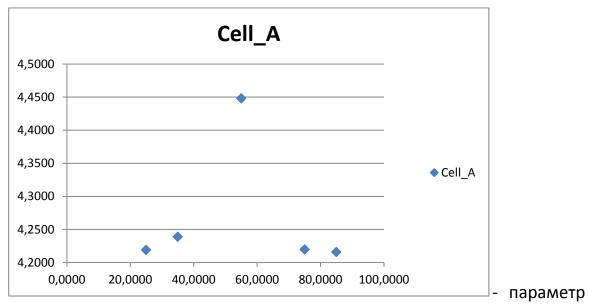
Мы получили образцы путем карбонатного соосаждения. Образцы имеют закономерно усиливающуюся интенсивность окраски. При помощи рентгенофазового анализа было обнаружено, что во всех образцах присутствует шпинель $NiAl_2O_4$, а также присутствует оксид алюминия, оксид никеля.


Образец $Ni_{0,8}AI_{1,2}O_4$ получился без примесей, присутствует только фаза шпинели(1 диаграмма):


Примесь оксида никеля в образце $Ni_1AI_1O_4$ и $Ni_{1,2}AI_{0,8}O_4$:

Примесь оксида алюминия в образце $Ni_{0,2}Al_{1,8}O_4$:

Были вычислены параметры ячейки образцов:

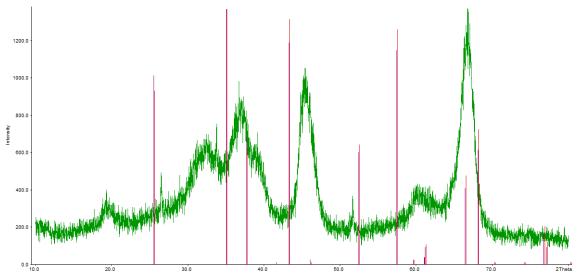


Мы видим, что параметр ячейки от 0,2 до 1 растет, а потом резко падает. Так как параметр ячейки растет с увеличением доли никеля, то выполняется закон Вегарда.

Синтез $Mg_{(1-x)}Co_xO$

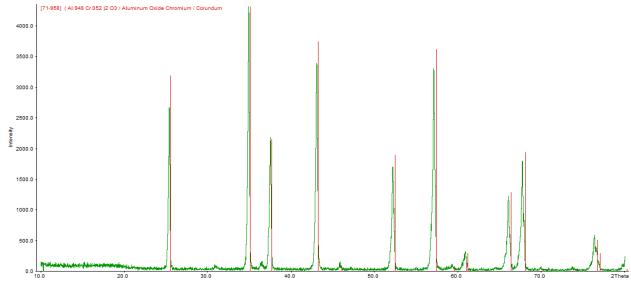
Синтез веществ этого состава был проведен двумя способами: оксалатным соосаждением и спеканием оксалатов магния и кобальта. Видно, что цвет меняется в зависимости от содержания магния от темно-коричневого к бежевому при большом содержании магния. Рентгенофазовый анализ показывает, что полученное вещество имеет структуру оксида магния или кобаль-

та, а расчет параметров ячейки не позволяет говорить о выполнении закона Вегарда:

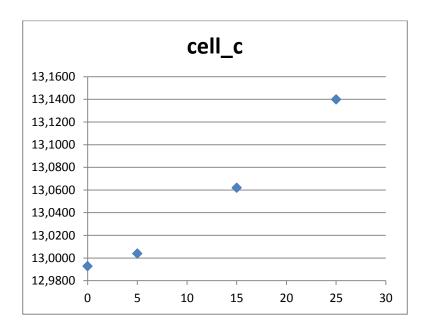


ячейки для веществ, полученных оксалатным соосаждением.

У веществ, полученных спеканием оксалатов, наблюдается такой же разброс параметров ячейки. Это может говорить о том, что магний и кобальт не образуют гомогенных твердых растворов, а остаются в смеси чистых оксидов.


Синтез $(Cr_xAl_{(2-x)})_2O_3$

Вещества состава $(Cr_xAl_{1-x})_2O_3$ (состав рубина) были получены путем карбонатного соосаждения. Видно изменение окраски от зеленой к красной в образцах, полученных при обжиге при 900 и 1200 градусах. Рентгенофазовый анализ показывает, что девятисот градусов было недостаточно для окончательного спекания оксидов и появления однофазного твердого раствора:


- пики выражены не так четко и не соответствуют структуре корунда, который мы хотели получить

После обжига при 1200 градусах порошок приобретал красноватую окраску. Ренгенофазовый анализ показывает, что это вещество имеет структуру корунда (тригональная сингония).

- все пики соответствуют веществу со структурой корунда.

Расчет параметров ячейки показывает, что закон Вегарда выполняется:

Этот эксперимент показывает, что путем карбонатного соосаждения мы получили достаточно чистое вещество с верными количественными отношениями компонентов.

VI Заключение.

Нами были получены и исследованы шпинели состава $Mg_xNi_{(1-x)}Al_2O_4$, системы Al_2O_3 -NiO, $Mg_{(1-x)}Co_xO$ и рубина $(Cr_xAl_{(2-x)})_2O_3$.

Исследована зависимость параметра ячейки от количества допирующего агента.

Мы определили, что самым быстрым и удобным методом получения оксалатов является спекание оксалатов, но он не является самым эффективным.

Самым эффективным методом является метод карбонатного соосаждения, хотя и самым трудоемким.

Мы научились нескольким методом получения шпинелей разного состава и получения различных систем оксидов.

Мы научились обрабатывать результаты рентгенофазового анализа, находить параметр ячейки.

Список литературы

- 1. Большая советская энциклопедия
- 2. Практикум по неорганической химии: учеб. Пособие для студ. высш. учеб. Заведений
- 3. Справочник химика том 3. Никольский Б.П.
- 4. Химия твердого тела. А. Вест

Благодарности.

Выражаем благодарность нашим преподавателям Жирову Александру Ивановичу, Брылеву Олегу Александровичу, Гаршеву Алексею Викторовичу, Григорьевой Анастасии Вадимовне, Дорофееву Сергею Геннадьевичу работникам практикума.