# Отчет по десятинедельному практикуму:

Синтез и исследование шпинелей состава Zn1-xCoxAl2O4, Zn1-xNixAl2O4, ZnCr2xAl2-2xO2 и бинарной системы

#### Выполнили:

Артабаева Руфина Куратова Наталья Холопов Василий

#### Руководители:

Жиров А.И. Брылев О.А. Григорьева А.В. Гаршев А.В.

#### Оглавление

| Введение                                                                                                      | 2  |
|---------------------------------------------------------------------------------------------------------------|----|
| l Шпинели. Структура                                                                                          | 3  |
| 2.Экспериментальная часть                                                                                     | 5  |
| 2.1 Получение прекурсора (NH4)2Zn(SO4)2·6H2O                                                                  | 5  |
| 2.2 Синтез шпинелей состава Zn1-xCoxAl2O4, Zn1-xNixAl2O4 методом гомогенизации путем сплавления двойных солей | 7  |
| 2.3 Синтез ZnCr2xAl2-2xO2 методом гомогенизации путем гидрокарбонатного соосаждения гидроксидов               | 8  |
| 2.4 Синтез бинарной системы Ni <sub>x</sub> Zn <sub>1-x</sub> O методом оксолатного соосаждения               | 10 |
| В Рентгено-фазный анализ                                                                                      | 11 |
| l Сопоставление методов                                                                                       | 13 |
| 5 Обсуждение результатов                                                                                      | 14 |
| 5 Выводы                                                                                                      | 15 |
| Список литературы                                                                                             | 16 |
| Благодарности                                                                                                 | 17 |

#### Введение

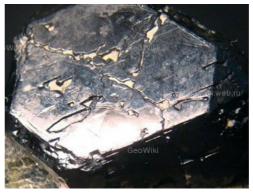
Основная цель работы заключалась в исследовании методов получения шпинелей различного состава и последующем изучение зависимости свойств полученных веществ от их структуры.

В течение работы проводились следующие этапы:

- 1. Ознакомление со свойствами шпинелей, их химическим составом, структурой и с методами получения.
- 2. Получение прекурсоров, отсутствующих в практикуме. В данным случае это был шенит цинка.
- 3. Синтез шпинелей различными методами.
- 4. Исследование зависимости изменения окраски шпинели от количества заместителя.
- 5. Исследование полученных веществ с помощью рентгено-фазного анализа.
- 6. Обработка полученных результатов.

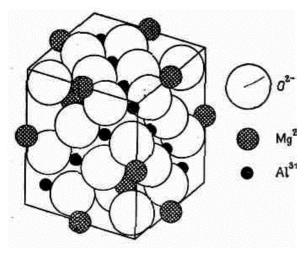


# 1 Шпинели. Структура


Шпинели (нем. Spinell) – группа минералов класса сложных оксидов с общей формулой AB2O4 или A(A,B)O4, где A – Mg2+, Zn2+, Mn2+, Fe2+, Co2+, Ni2+; В – Al3+, Fe3+, Сr3+. Шпинели представляют собой системы твёрдых растворов с широко развитым изоморфизмом катионов A и B.

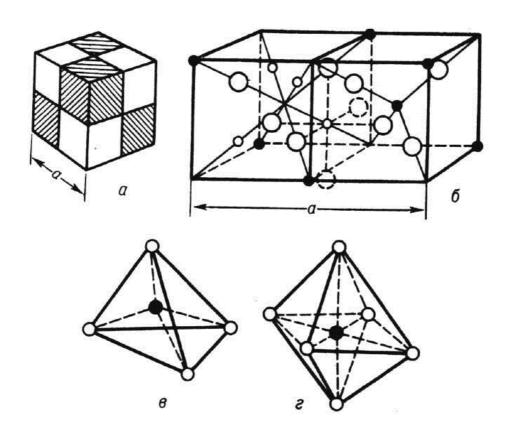
Свойства. Большинство шпив концентрированных кислоримы в растворах КНSO<sub>4</sub> и - главные носители магнитных пород. Плотность, параметры решетки и др. свойства шписостава и распределения катилей характерны высокотемпеобразования.




нелей растворимы тах и все раство-Na<sub>2</sub>CO<sub>3</sub>. Шпинели свойств горных кристаллической. нелей зависят от онов. Для шпинературные условия

**Цвет** шпинелей определяется ления основных катионов и месей. По окраске и составу новидности: благородная ново- и огненно-красная до розовой (хромофор  $\operatorname{Cr}^{3+}$ ); сапгель- голубая до синей (до рошпинель- травяно- и олив-




степенью окисналичием привыделяют разшпинель - рубисиреневофировая шпин-3,5% FeO); хлоково-зеленая

(Fe<sup>3+</sup>); плеонаст, или цейлонит,- непрозрачная черно-зеленая до черной (до 15% FeO); цинксодержащая ганношпинель - голубовато-зеленая, темно-синяя, фиолетовая; пикотит- непрозрачная черно-зеленая до черной; примеси хромофоров обусловливают также оранжевую, красновато-бурую и коричневую окраски. Все минералы отличаются высокой твердостью, термической и химической стойкостью.



Структура Кристалл шпинели имеет ГЦКрешетку, в узлах которой расположены анионы, образующие плотнейшую кубическую трехслойную упаковку. Катионы расположены в междоузлиях, заполняя их частично. Элементарная ячейка шпинели – куб с удвоенным ребром: она состоит из 8 катионов X, 16 катионов Y и 32 анионов, т.е. на элементарную ячейку приходится восемь формульных единиц. Каждый анион окруокружен одним X- и тремя Y-катионами. В структуре шпинели имеются две различные катионные подрешетки: тетраэдрическая (A- под-

решетка), и октаэдрическая, (В-подрешетка). Координационное число аниона в решетке шпинели равно 12, координационное число катиона в тетраэдрическом положении 4, в октаэдрическом положении 6. Катионное распределение по подрешеткам A и В определяется типом химических связей, которые возникают между атомами катионов и атомами кислорода. По характеру распределения катионов в тетраэдрических позициях выделяют шпинели: нормальные (8 тетраэдров занято катионами  $A^{2+}$ , 16 октаэдров - катионами  $M^{3+}$ ); обращенные (8 тетраэдров занято  $M^{3+}$ , 16 октаэдров -  $M^{3+}$  и  $M^{3+}$ ); промежуточные.



# 2. Экспериментальная часть

Экспериментальная часть состояла из нескольких этапов:

- 1. Получение требуемого прекурсора шенита цинка (NH4)2Zn(SO4)2·6H2O
- 2. Получение шпинелей Zn1-xCoxAl2O4, Zn1-xNixAl2O4 методом гомогенезации путем сплавления двойных солей\*
- 3. Получение шпинелей Zn1-хCrxAl2O4 методом гомогенезации путем гидрокарбонатного соосаждения гидроксидов\*
- 4. Получение бинарной системы  $Ni_xZn_{1-x}O$  методом оксолатного соосаждения\*

\*Во всех случаях с последующим высокотемпературным обжигом

Для необходимых синтезов нам нужны были прекурсоры:

- 1. Цинкаммонийный шенит (NH4)2Zn(SO4)2·6H2O
- 2. Хромоаммонийные квасцы NH4Cr(SO4)2·12H2O
- 3. Алюмоаммонийные квасцы NH4Al(SO4)2·12H2O
- 4. Никельаммонийный шенит (NH4)2Ni(SO4)2·6H2O

# 2.1 Получение прекурсора (NH4)2Zn(SO4)2·6H2O

В наличиии не было только цинкаммонийного шенита. Синтезируем его:

$$ZnSO_4 \cdot 7H_2O + (NH_4)_2SO_4 = (NH4)2Zn(SO4)2 \cdot 6H2O + H2O$$

Начинаем выпаривать раствор ZnSO4 с учетом данных растворимости в стакане на 200 мл до выпадения кристаллов белого цвета. Таким образом получаем насыщенный раствор.

| температура                      | в горячей воде | в холодной воде |
|----------------------------------|----------------|-----------------|
| Растворимость ZnSO4 на 100г воды | 60.6г          | 53.8г           |





Далее готовим насыщенный раствор (NH4)2SO4: берем дистиллированную воду, нагреваем её до  $t_{\text{кипения}}$ , добавляем соль небольшими дозами по мере растворения, постоянно перемешивая. Сливаем растворы в общий лит-

ровый стакан: выпадают хлопья белого цвета. Потом полученный раствор помещаем в кристаллизатор с холодной водой. Мешаем палочкой по стенкам; выпадает осадок белого цвета. Полученный осадок фильтруем на стеклянном фильтре с помощью водоструйного насоса, затем промываем и сушим. Выход продукта составил 71,12%

#### Привидем необходимые расчеты:

```
m(стакана)=55.24 (г) m(стакана с раствором ZnSO_4)=168.54 (г) m(раствора ZnSO_4)=113.3 (г) \omega(ZnSO_4)=113.3 (г) \omega(Zn
```

# 2.2 Синтез шпинелей состава Zn1-xCoxAl2O4, Zn1xNixAl2O4 методом гомогенизации путем сплавления двойных солей.

 $(NH4)2Zn(SO4)2\cdot 6H2O+(NH4)2Co(SO4)2\cdot 6H2O + 2NH4AI(SO4)2\cdot 12H2O =$ 

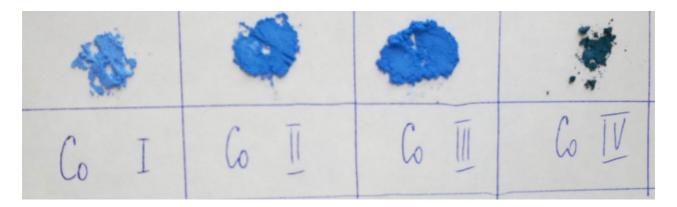
Zn1-xCoxAl2O4 + NH3 + H2O +SO2 + O2 Взвешиваем расчитанное количество (NH4)2Zn(SO4)2·6H2O,

И

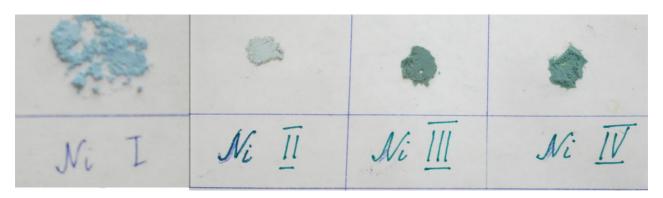
(NH4)2Co(SO4)2·6H2O 2NH4AI(SO4)2·12H2O.

Тщательно перетираем полученную смесь в ступке до образования мелкого порошка. Отметим, что с увеличением количества

(NH4)2Co(SO4)2·6H2O полученный порошок приобретает всё более бледно-розовый оттенок. Ставим его в фарфоровом тигле прокаливаться




на газовой горелке в вытяжном шкафу. Отметим, что порошок начинает плавиться с краев с увеличением объема, так как выделяются пары воды. Изменение цвета происходит от бледно-розового до бледно-фиолетового, причем во время плавления порошок имеет насыщенный лиловый цвет. Заканчиваем прокаливать после прекращения изменения


цвета.

 $(1-x)(NH_4)_2Zn(SO_4)_2 \cdot 6H_2O + x(NH_4)_2Co(SO_4)_2 \cdot 6H_2O + 2NH_4Al(SO_4)_2 \cdot 12H_2O =$ = $(1-x)(NH_4)_2Zn(SO_4)_2 + x(NH_4)_2Co(SO_4)_2 + 2NH_4Al(SO_4)_2 + 30H_2O$ 

После охлаждения перетираем полученное вещество в ступке до мелкого порошка. Затем его нагреваем на воздуходувной горелке в вытяжном шкафу. Смесь приобретает бледно-голубой цвет. Перетираем полученное вещество в ступке до мелкого порошка. Затем пересыпаем его в алундовый тигль, и помещаем в муфельную печь. После обжига 900°С цвета получились блеклые, невыразительные. После обжига 1200°С цвета получились яркие. Со1, Со2, Со3, Со4 — насыщенный небесно-синий. После высокотемпературного обжига масса вещества уменьшилась в среднем на 0,01г. Выход продукта составил от 84% до 94%.



Для синтеза Zn1-xNixAl2O4 проведем аналогичные действия. Отметим, что до и после прокаливания вещество имело светло-зеленый и желто-коричневый цвета соответственно. После обжига цвет полученной шпинели варьировался от светло-небесноголубого до сизо-небесно-голубого. Выход продукта составил от 85 до 94%.



#### Приведем необходимые расчеты:

 $M(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O) = 395(г/моль)$ 

 $M((NH_4)_2Zn(SO_4)_2 \cdot 6H_2O) = 401(\Gamma/моль)$ 

 $M(NH_4Al(SO_4)_2 \cdot 12H_2O) = 453(г/моль)$ 

|                                      | $Ni_{0,2}Zn_{0,8}Al_2O_4$ | $Ni_{0,4}Zn_{0,6}Al_2O_4$ | $Ni_{0,6}Zn_{0,4}Al_2O_4$ | $Ni_{0,8}Zn_{0,2}Al_2O_4$ |
|--------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| $m(NH_4)_2Ni(SO_4)_2 \bullet 6H_2O)$ | 0,158                     | 0,316                     | 0,474                     | 0,632                     |
| $m((NH_4)_2Zn(SO_4)_2 \cdot 6H_2O)$  | 0,6416                    | 0,4812                    | 0,3208                    | 0,1604                    |
| $m(NH_4Al(SO_4)_2 \cdot 12H_2O)$     | 1,812                     | 1,812                     | 1,812                     | 1,812                     |
| m(шпинели) <sub>теоретическая</sub>  | 0,3636                    | 0,3612                    | 0,3588                    | 0,3564                    |
| m(шпинели) <sub>практическая</sub>   | 0,3214                    | 0,3372                    | 0,3195                    | 0,3258                    |

# 2.3 Синтез ZnCr2xAl2-2xO2 методом гомогенизации путем гидрокарбонатного соосаждения гидроксидов

Готовим смесь (NH4)2Zn(SO4) $2\cdot6$ H2O, NH4Cr(SO4)2\*6H2O, 2NH4Al(SO4) $2\cdot12$ H2O и 20% избыток NaHCO3, взвешивая каждое вещество в отдельности.

Перемешиваем палочкой аккуратно, иначе начинает мокреть. В литровый стакан с дистиллированной водой на магнитной мешалке, доведенной до кипения, добавляем смесь маленькими порциями. Затем мерим рН-среды. Индикаторная бумажка показывает синий цвет- щелочная среда. (После растворения происходит взаимно усиливающийся гидролиз). Доводим до кипения и мерим рН-среды снова: сильнощелочная среда. Продолжает выпадать осадок сизыми хлопьями.



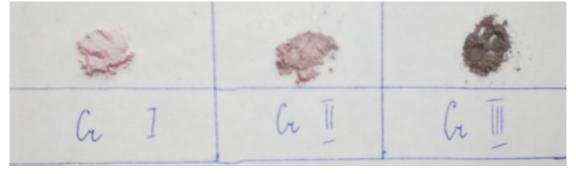


Суммарное уравнение реакции:  $(NH_4)_2Zn(SO_4)_2 + 2x(NH_4)_2Cr(SO_4)_2 + (2-2X)NH_4Al(SO_4)_2 + 8NaHCO_3 =$ 

=Zn(OH)<sub>2</sub> + 2xCr(OH)<sub>3</sub> + (2-2X)Al(OH)<sub>3</sub> + 2(NH<sub>4</sub>)2SO<sub>4</sub>+ 4Na<sub>2</sub>SO<sub>4</sub> + 8CO<sub>2</sub>

С течением времени происходит осаждение на дно сосуда. Однако под воздействием конвекции периодически взлетают порции вещества.

После осаждения вещества проводим декантацию: сливаем верхний слой,


берем пробу на сульфаты и карбонаты (Ва(NO3)2), нагреваем дистиллированную воду, наливаем её в данный стакан. Повторятем пока не будет карбонатов и сульфатов (в среднем 3-4 раза). Потом фильтруем раствор на бумажном фильтре, а затем сушим осадок(сизый). Ставим прокаливаться на газовой горелке в фарфоровом тигле.



Цвет веществ изменился до коричневого.

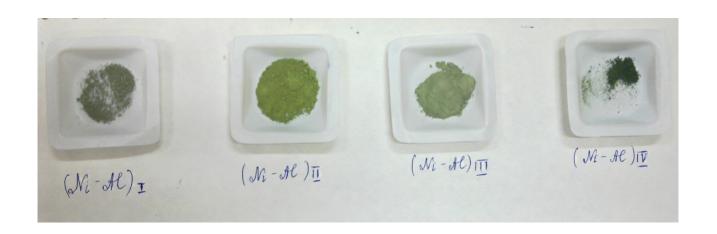
 $Zn(OH)2 + 2xCr(OH)2 + (2-2x)Al(OH)3 = ZnO \cdot 2xCrO \cdot (1-x)Al2O3 \cdot + 4H2O$ 

Ставим на высокотемпературный обжиг в алундовом тигле в муфельную печь. После обжига цвета варьировались от светло-розового до коричнево розового. Выход продукта составил от 69% до 80%.



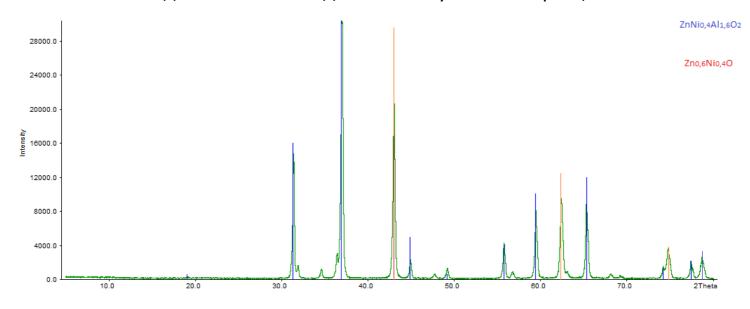
 $M((NH_4)_2Zn(SO_4)_2 \bullet 6H_2O)=401(г/моль)$   $M(NH_4Cr(SO_4)_2 \bullet 12H_2O)=478(г/моль)$   $M(NH_4Al(SO_4)_2 \bullet 12H_2O)=453(г/моль)$ Получим 0,001 моль веществ

| Вещество                                                                 | ZnCr <sub>0,4</sub> Al <sub>1,6</sub> O <sub>4</sub> | ZnCr <sub>0,8</sub> Al <sub>1,2</sub> O <sub>4</sub> | ZnCr <sub>1,2</sub> Al <sub>0,8</sub> O <sub>4</sub> | ZnCr <sub>1,6</sub> Al <sub>0,4</sub> O <sub>4</sub> |
|--------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $m((NH_4)_2Zn(SO_4)_2 \bullet 6H_2O)$                                    | 0,401                                                | 0,401                                                | 0,401                                                | 0,401                                                |
| $m((NH_4)_2Cr(SO_4)_2 • 6H_2O)$                                          | 0,1912                                               | 0,3824                                               | 0,5736                                               | 0,7648                                               |
| m(NH <sub>4</sub> Al(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O) | 0,7248                                               | 0,5436                                               | 0,3624                                               | 0,1812                                               |
| т(вещества)                                                              | 0,193                                                | 0,203                                                | 0,213                                                | 0,223                                                |
| т(вещества)практическая                                                  | 0,15                                                 | 0,14                                                 | 0,17                                                 | 0,16                                                 |
| ŋ(%)                                                                     | 77,72                                                | 68,97                                                | 79,81                                                | 71,75                                                |


# 2.4 Синтез бинарной системы Ni<sub>x</sub>Zn<sub>1-x</sub>O методом оксолатного соосаждения

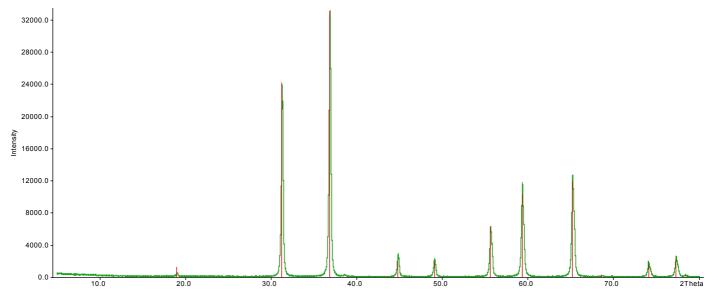
 $(1-x)(NH4)2Zn(SO4)2 + x(NH4)2Ni(SO4)2 + (NH4)2C2O4 + 2H2O = Zn1-xNixC2O4 \cdot 2H2O + 2(NH4)2SO4$ 

Готовим два горячих раствора в литровых стаканах с (NH4)2C2O4; никелевым и цинковым <u>шенитами</u>. Нагреваем их. Сливаем в общий стакан. Ставим в кристализатор, помешивая стеклянной палочкой по стенкам. Выпадают кристаллы светло-салатового цвета. Фильтруем с помощью стеклянного фильтра на водоструйном насосе. После фильтрования промываем спиртом. Ставим в сушильный шкаф. До прокаливания у вещества светлосалатовый цвет. Прокаливаем на горелке. Во время прокаливания наблюдаем, как вещество меняет цвет от тёмно-желтого до черного. Наблюдается результат каталитического окисления продуктов неполного окисления углеводородов. Ставим на обжиг при 900°С в муфельную печь.

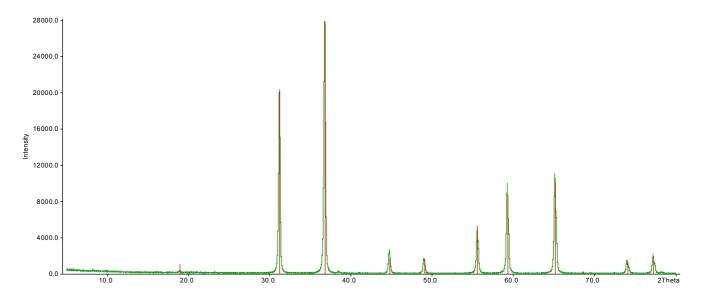

 $Zn1-xNixC2O4\cdot 2H2O = Zn1-xNixO + CO + CO2 + 2H2O$ 

| вещество                              | Ni <sub>0.2</sub> Zn <sub>0.8</sub> O | Ni <sub>0.4</sub> Zn <sub>0.6</sub> O | Ni <sub>0.6</sub> Zn <sub>0.4</sub> O | Ni <sub>0.8</sub> Zn <sub>0.2</sub> O |
|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                       |                                       |                                       |                                       |                                       |
| $m((NH_4)_2Zn(SO_4)_2 \bullet 6H_2O)$ | 0,158                                 | 0,316                                 | 0,474                                 | 0,632                                 |
| $m(NH_4Al(SO_4)_2 \cdot 12H_2O)$      | 0,6416                                | 0,4812                                | 0,3208                                | 0,1604                                |
| m <sub>теоретическая</sub>            | 0,1596                                | 0,1572                                | 0,1548                                | 0,1524                                |
| тпрактическая                         | 0,1035                                | 0,1072                                | 0,1113                                | 0,1049                                |

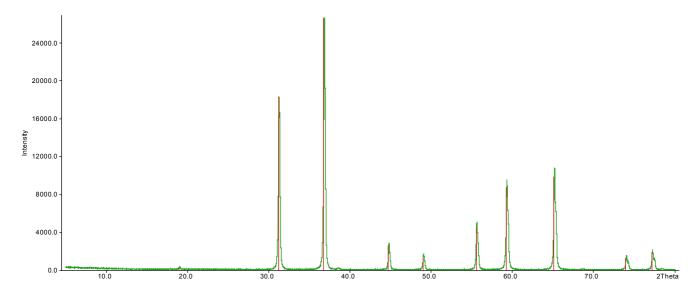



# 3 Рентгено-фазный анализ

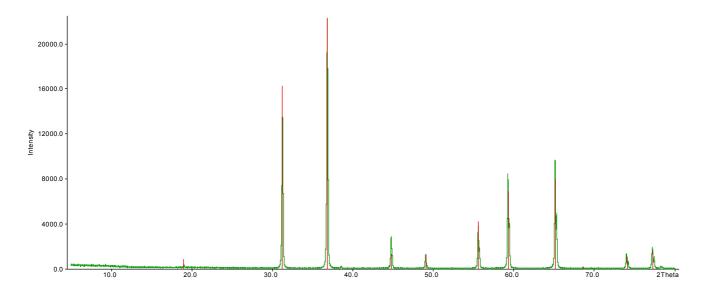
Был сделал РФА почти для всех полученных образцов




При попытке создать шпинели с замещением алюминия никелем были получены шпинели состава  $Zn_{1-x}Ni_xAlO_2$  и бинарные системы состава  $Zn_{1-x}Ni_xO$  Это мы установили изучив результаты рентгенофазного анализа, часть пиков соответствовала одному веществу, часть другому, несколько пиков перекрывались.


РФА шпинелей состава  $Zn_{1-x}Co_xAlO_2$  показал полное совпадение полученных веществ с предполагаемыми в начале.




Параметр решётки 8,0857  $\hbox{Å}$  для вещества состава  $\text{Co}_{0,2}\text{Zn}_{0,8}\text{AlO}_2$ 



Параметр решётки 8.0932 Å для вещества состава  $Co_{0,4}Zn_{0,6}AlO_2$ 



Параметр решётки 8,0897  $\hbox{Å}$  для вещества состава  $\hbox{Co}_{0,6}\hbox{Zn}_{0,4}\hbox{AlO}_2$ 



Параметр решётки  $8.1010~{\rm \AA}$  для вещества состава  ${\rm Co_{0.8}Zn_{0.2}AlO_2}$ 

Параметр решётки 8,1317  $\hbox{Å}$  для вещества состава  $ZnCr_{0.4}Al_{1,6}O_2$ 

Параметр решётки 8,1627  $\hbox{Å}$  для вещества состава  $ZnCr_{0.8}Al_{1,2}O_2$ 

# 4 Сопоставление методов

| Метод             | Плюсы             | Минусы               |  |
|-------------------|-------------------|----------------------|--|
| Метод сплавления  | Позволяет полу-   | Требует продолжи-    |  |
| двойных солей     | чить нужное ве-   | тель-ного обжига на  |  |
|                   | щество высокой    | возду-ходувной го-   |  |
|                   | степени чистоты,  | релке, полный синтез |  |
|                   | методика проста и | занимает чуть более  |  |
|                   | универсальна.     | 1 часа.              |  |
| Метод гидрокар-   | Подходит для по-  | Требует неодно-      |  |
| бонатного сооса-  | лучения большин-  | кратной декантации,  |  |
| ждения            | ства шпинелей,    | степень чистоты по-  |  |
|                   | исключается об-   | лученного вещества   |  |
|                   | жиг на воздухо-   | менее высокая, чем   |  |
|                   | дувной горелке    | при сплавлении       |  |
| Метод оксолатного | Требует меньше    | Подходит только      |  |
| соосаждения       | всего времени,    | для двухзарядных     |  |
|                   | исключается об-   | ионов, вещество по-  |  |
|                   | жиг на воздухо-   | лучается с большим   |  |
|                   | дувной горелке.   | количеством приме-   |  |
|                   |                   | сей.                 |  |

# 5 Обсуждение результатов

Достаточно небольшой выход продукта при гидрокарбонатном и оксолатном соосаждениях, можно объяснить тем, что часть получаемых веществ остается в растворе при кристаллизации. И процесс фильтрации идет не со стопроцентным выходом.

Качество же соединений можно объяснить неполным разложением получаемых оксолатов.

Параметр элементарной решётки шпинели возрастал в зависимости от относительного содержания Со или другого допирующего агента и для всех замещённых шпинелей был больше параметра ячейки эталонной цинковой шпинели (8,0848Å). Это можно объяснить, используя правило Вегарда (ионные радиусы  $\text{Cr}^{3+},\text{Co}^{2+},\text{Ni}^{2+}$ больше ионных радиусов  $\text{Al}^{3+}$  и  $\text{Zn}^{2+}$  соответственно).

Цвет полученных образцов зависел от содержания допирующих агентов (чем больше оно было, тем насыщеннее становился цвет).

РФА показал, что содержание примесей также влияет на цвет получаемой шпинели.

### 6 Выводы

- 1. При синтезе шпинелей путём сплавления двойных солей высокотемпературный обжиг лучше проводить при  $1200^{0}$ C.
- 2. Цвет шпинели зависит от содержания хромофоров в ней.
- 3. Самым лучшим методом для синтеза шпинелей оказался метод гомогенизации путем сплавления двойных солей.
- 4. В ходе анализа полученных данных из графиков РФА было замечено, что концентрация допирующего агента коррелирует с параметром элементарной решётки, то есть, в данном случае, чем она больше, тем больше параметр решётки.

# Список литературы

1)Д.О. Чаркин, А.И.Баранов, П.С.Бердоносов "Начала химического эксперимента", М.: изд ФНМ 2007

2)Справочник химика, том 3, М.: 1965 год.

3)Шпинель.-URL: http://ru.wikipedia.org/wiki/шпинель

# Благодарности

Авторы выражают огромную благодарность преподавателям: Жирову А.И., Брылёву О.А., Григорьевой А.В., Гаршеву А.В.,.- за неустанную моральную поддержку и разъяснение почти всех возникавших вопросов и сотрудникам практикума за готовность помочь в любой ситуации.