Московский государственный университет имени М.В. Ломоносова

Факультет наук о материалах

Отчет по десятинедельному практикуму

Синтез и свойства систем $Zn_{(1-x)}Ni_xO, Zn_{(1-x)}Ni_xAl_2O_4, ZnAl_{(2-2x)}Cr_{2x}O_4$

Работу выполнили студенты 1 курса: Дзубан Александр Лебедев Дмитрий

> Научные руководители: Коренев Ю.М. Жиров А.И.

Москва 2007

Содержание

Цели работы	3
Литературный обзор	4
1). Шпинель	4
2). Система ZnO-NiO	5
Синтез	7
Синтез исходных веществ	7
Синтез цинкового шенита	7
Синтез никелевого шенита	8
Синтез хромоаммонийных квасцов	8
Синтез целевых продуктов.	9
Твердофазный синтез	9
Гидрокарбонатное соосаждение	10
Соосаждение оксалатов	12
Анализ полученных результатов	14
1. Никельсодержащие составы	14
2. Хромсодержащие составы	15
3.Система ZnO - NiO	18
Выводы	20
Список использованной литературы	21

<u>Цели работы</u>

Целью нашей работы было получение и исследование свойств систем твёрдых растворов $Zn_{(1-x)}Ni_xO$, $Zn_{(1-x)}Ni_xAl_2O_4$ и $ZnAl_{(2-2x)}Cr_{2x}O_4$, сравнение методов получения целевых продуктов – твердофазного и соосаждения гидрокарбонатов, получение основных навыков лабораторной работы. Соединения составов $Zn_{(1-x)}Ni_xAl_2O_4$ и $ZnAl_{(2-2x)}Cr_{2x}O_4$ имеют структуру шпинели. Наличие в них катиона Ni^{2+} должно придать голубой оттенок, зависящий от мольной доли оксида никеля в твердом растворе, а наличие катиона Cr^{3+} – розовый оттенок.

Синтез данных соединений проводился тремя способами: непосредственно из механической смеси цинк- и никель аммонийных шенитов и алюмоаммонийных (хромоаммонийных) квасцов (прокаливанием на воздухе с растворением в кристаллизационной воде); совместным осаждением нерастворимых соединений цинка, никеля, алюминия и хрома гидрокарбонатом натрия; совместным осаждением нерастворимых соединений цинка и никеля оксалатом аммония.

Рис.1. Концентрационные треугольники систем ZnO-NiO-Al₂O₃, ZnO-Al₂O₃-Cr₂O₃. Точками обозначены исследованные составы.

<u>Литературный обзор</u>

1). Шпинель

Термин «шпинельная структура» происходит от названия минерала $MgAl_2O_4$, который кристаллизуется в кубической системе. Шпинели – группа минералов класса сложных окислов с общей формулой AB_2O_4 или $A(A,B)O_4$, где $A - Mg^{2+}$, Zn^{2+} , Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} ; а $B - Al^{3+}$, Fe^{3+} , Cr^{3+} , Mn^{3+} , Ti^{4+} , V^{3+} . Шпинель представляют собой систему твёрдых растворов с широко развитым изоморфизмом катионов A и B. В зависимости от преобладания катиона B различают: алюмошпинели (шпинель $MgAl_2O_4$, герцинит $FeAl_2O_4$, галаксит (Mn,Fe)Al_2O_4), ферришпинели (магнетит, якобсит MnFe₂O₄, франклинит ZnFe₂O₄, треворит), хромшпинели, титаношпинели (ульвешпинель, магнезиальный аналог ульвешпинели MgTiO₄ и др.) и ванадиошпинели (кульсонит FeV₂O₄).

Элементарная ячейка шпинели содержит восемь «молекул» AB_2O_4 . Относительно большие ионы кислорода образуют гранецентрированную кубическую решетку. В такой плотно упакованной кубической структуре существуют два вида пустот (мест): тетраэдрические и октаэдрические, окружение которых состоит из четырех и шести ионов кислорода соответственно. В элементарной ячейке структуры шпинели 32 аниона кислорода образуют плотнейшую кубическую упаковку с 64 тетраэдрическими пустотами (катионами занято 8) и 32 октаэдрическими (катионами занято 16). По характеру распределения катионов в занятых тетраэдрических и октаэдрических позициях структуры выделяют: нормальные (8 тетраэдров занято катионами A^{2+} , 16 октаэдров - катионами B^{3+}), обращенные (8 тетраэдров занято B^{3+} , 16 октаэдров - 8 B^{3+} и 8 A^{2+}) и промежуточные шпинели. Внедрение ионов в идеальную кислородную решетку приводит к ее изменениям: тетраэдр увеличивается, но остается правильным, а октаэдр уменьшается с небольшими искажениями.

Для всех шпинелей характерны высокая твердость (5-8 по минералогической шкале), химическая и термическая устойчивость. Плотность, отражательная способность, твёрдость, параметр элементарной ячейки, магнитные и электрические свойства существенно зависят от состава и характера распределения катионов и заметно колеблются в пределах каждой группы.

Для шпинелей характерны высокотемпературные условия образования; к выветриванию они устойчивы, сохраняются в россыпях. В природе часто встречаются в виде акцессорных минералов (входят в состав горных пород в количествах менее 1% по массе). Многие минералы применяют в качестве катализаторов химико-технологических процессов (например в синтезе этиленоксида), в производстве керамики, огнеупоров, термостойких красок.

Известно большое число синтетических шпинелей в которых кроме катионов, характерных для природных минералов, могут содержаться ионы Ca, Li, Cd, Cu, W, Ga, Ge, Ag, Sb, Nb, In. Как разновидность ферритов эти шпинели лежат в основе разнообразных магнитных материалов и диэлектриков, используемых для изготовления элементов запоминающих устройств ЭВМ

2). Система ZnO-NiO

Система имеет существенное значение для технологии катализаторов и люминофоров.

Её компоненты имеют различную кристаллическую структуру: NiO – кубическая, ZnO – гексагональная.

a)

б) Рис.1 Структура шпинели.

<u>Синтез</u>

Синтез веществ делится на 4 основных стадии:

1. Синтез исходных веществ – шенитов никеля и цинка, хромоаммонийных квасцов

 Синтез шпинелей твердофазным методом - Zn_(1-x)Ni_xAl₂O₄, где х: 0,1; 0,3; 0,5 и ZnAl_(2-2x)Cr_{2x}O₄, где х: 0,2; 0,4; 0,6.

3. Синтез шпинелей таких же составов методом карбонатного осаждения (+ состав $ZnAl_{0,4}Cr_{1,6}O_4$)

4. Синтез соединений состава Zn_(1-x)Ni_xO, где х: 0,3; 0,7.

Синтез исходных веществ

Исходными веществами были выбраны никелевый и цинковый шениты, алюмо- и хромоаммонийные квасцы (кристаллогидраты двойных сульфатов, одним из катионов является ион аммония). Преимущества данных соединений:

1. Стойкость - могут храниться длительное время без изменения состава, в нашем случае в течение двух с половиной месяцев

2. Простота получения – шениты цинка и никеля были получены во время первого (не вводного) практического занятия из доступных сульфатов цинка, никеля и аммония.

3. Соли аммония разлагаются при нагревании (достаточно температуры пламени воздуходувной горелки) с образованием газообразных продуктов, т.е. возможно получение оксидов из исходных веществ прямым прокаливанием.

Синтез цинкового шенита

В соответствии с расчетами для получения 50 грамм шенита, было взято ZnSO₄·7H₂O - 35,94г v (H₂O) - 36мл (NH₄)₂SO₄ - 16,61 г v (H₂O) - 25мл Взаимодействие протекает по реакции: (NH₄)₂SO₄ + ZnSO₄·7H₂O = (NH₄)₂Zn(SO₄)₂·6H₂O↓ + H₂O Проведение синтеза:

Навешиваем исходные вещества. Нагреваем дистиллированную воду, всыпаем сульфаты цинка и аммония и сливаем полученные насыщенные растворы. Наблюдается выпадение белых кристаллов. Охлаждаем до комнатной температуры, фильтруем на стеклянном фильтре, оставляем до следующего занятия до полного высыхания.

Масса получившегося шенита – 46,67 Выход – 93%

Синтез никелевого шенита

В соответствии с расчетами для получения 50 грамм шенита, было взято

NiSO₄·7H₂O - 35,67 г v (H₂O) - 36мл (NH₄)₂SO₄ - 16,7г v (H₂O) - 25мл

Взаимодействие протекает по реакции:

$$(NH_4)_2SO4 + ZnSO_4 \cdot 7H_2O = (NH_4)_2Zn(SO_4)_2 \cdot 6H_2O \downarrow + H_2O$$

Проведение синтеза:

Навешиваем исходные вещества. Нагреваем дистиллированную воду, всыпаем сульфаты никеля и аммония и сливаем полученные насыщенные растворы. Наблюдается выпадение светло-зелёных кристаллов. Охлаждаем до комнатной температуры, фильтруем на стеклянном фильтре, оставляем до следующего занятии я до полного высыхания.

Масса получившегося шенита – 47,5г

Выход – 95%

Синтез хромоаммонийных квасцов

В соответствии с расчетами для получения 12 грамм квасцов, было взято

т (NH₄)₂Cr₂O₇ - 3,3 г v (H₂O) - 9мл v (C₂H₅OH) – 4 мл v (H₂SO₄)_{40%} - 15мл Взаимодействие протекает по реакции:

 $(NH_4)_2Cr_2O_7 + 3C_2H_5OH + 4H_2SO_4 + 17H_2O = 2NH_4Cr(SO_4)_2 \bullet 12H_2O + 3CH_3COH \uparrow$

Проведение синтеза:

Под тягой, к теплому раствору разбавленной серной кислоты при постоянном перемешивании добавляем перетертый порошок дихромата аммония. Полученный раствор ставим в баню с холодной водой и по каплям вносим рассчитанное количество спирта. Наблюдается выделение газа и изменение цвета раствора с с красного на тёмно-фиолетовый. Выпадают кристаллы хромоаммонийных квасцов, фильтруем на стеклянном фильтре, оставляем до следующего занятии я до полного высыхания.

Масса получившегося шенита – 7,5 Выход 62,5%

Алюмоаммонийные квасцы были взяты из запасов практикума.

Синтез целевых продуктов.

Синтез проводился тремя основными методами

- 1. Из твердой фазы
- 2. Осаждением карбонатами
- 3. Осаждением оксалатами

Твердофазный синтез

Были навешены образцы составов:

Состав, х:	0,1	0,3	0,5
m(Zn)	1,98	1,55	1,11
m(Ni)	0,22	0,65	1,10
m(Al)	4,96	5,00	5,03

Состав, х:	0,2	0,4	0,6	0,8
m(Zn)	2.08	1,97	1,88	1.79
m(Al)	3.75	2.67	1,70	0.81
m(Cr)	0.99	1.88	2.69	3.42

Расчет навесок выполнялся на 1 грамм конечного вещества

После навешивания 6 составов (состав, x=0,8 был сделан с помощью метода соосаждения карбонатов, в таблице приведен лишь расчет) были перетерты и прокалены на газовой горелке. При первом прокаливании наблюдалось плавление солей в кристаллизационной воде и ее упаривание. Составы перетирались и прокаливались до полного прекращения выделения газов. Обычно хватало 3 повторений. После этого составы прокаливались на воздуходувной горелке, для разложения солей. При этом происходило выделение едких газов, поэтому все процессы проводились под тягой:

ZnSO₄ = ZnO + SO₂ + 0.5 O₂ NiSO₄ = NiO + SO₂ + 0.5 O₂ (NH₄)₂SO₄ = 2NH₃ + SO₂ + H₂O + 0.5 O₂ и 2NH₃ + 1.5O₂ = N₂ + 3H₂O

После полного прекращения выделения газов составы были поставлены в печь, сначала на 900 потом на 1200. После 1-го отжига вещества были взвешены, и часть была отсыпана. Массы соответственно:

Состав, х:	0,1	0,3	0,5
$m(Zn_{(1-x)}Ni_xAl_2O_4), г$	0,92	0,95	0,93
Выход, %	92	95	93

Состав, х:	0,2	0,4	0,6
m(ZnAl _(2-2x) Cr _{2x} O ₄), г	0,84	0,73	0,68
Выход, %	84	73	68

Гидрокарбонатное соосаждение

В соответствии с расчетами (см. пункт «Твердофазный синтез») были сделаны 7 навесок шенитов и квасцов. В соответствии с уравнениями реакций к каждой навеске было добавлено рассчитанное количество грамм гидрокарбоната натрия, взятого с 10% избытком:

(x+y)(NH₄)₂ \mathbf{Q} (SO₄)₂ + 2NaHCO₃ = x \mathbf{Q} CO₃ • y \mathbf{Q} (OH)₂↓ + (x+2y)CO₂↑+ 2NH₄⁺ + 2Na⁺ + 2SO₄²⁻ + xH₂O; x+y=1, \mathbf{Q} – Zn или Ni

В ходе этой реакции может выпасть либо карбонат металла, либо гидроксид. Это зависит от условия проведения реакция, в наших условиях, скорее всего, выпадает смесь этих веществ (х – карбоната и у - гидроксида). Но, т.к. и карбонат, и гидроксид как никеля, так и цинка при нагревании разлагаются до оксидов, нас не интересует их соотношение между собой в осадке, т.к. после осаждения проводилось прокаливание на горелке.

NH₄ $M(SO_4)_2$ + 3NaHCO₃ = $M(OH)_3$ ↓ + 3CO₂↑+ NH₄⁺ + 3Na⁺ + 2SO₄²⁻, где M – Al или Cr

В стакан с горячей дистиллированной водой (приблизительно 800-1000 мл), стоящий на магнитной мешалке, вносим (быстро, но маленькими порциями) навески. При этом наблюдается как бы вскипание раствора – выделение CO₂ и выпадение осадка – нерастворимых карбонатов цинка никеля и алюминия или же цинка, алюминия и хрома, в зависимости от состава. После этого осадок промывался горячей дистиллированной водой, после каждого промывания бралась проба на сульфат и карбонат ион. Их наличие проверялось добавлением раствора нитрата бария.

 $SO_4^{2-} + Ba^{2+} = BaSO_4 \downarrow$

 $\text{CO}_3^{2-} + \text{Ba}^{2+} = \text{BaCO}_3 \downarrow$

Содержание карбонат иона проверяли добавлением соляной кислоты в раствор, если наблюдалось выделение газа (CO₂), то в осадке присутствовал карбонат.

Обычно после 4-ого отмывания проба на сульфат и карбонат давала отрицательный результат. После этого осадок фильтровали, сушили, и перетирали. Далее прокаливали на газовой горелке до прекращения выделения газов. После этого составы были поставлены в печь, сначала на 900 потом на 1200. После 1-го отжига вещества были взвешены, и часть была отсыпана.

Массы соответственно:

Zn_(1-x)Ni_xAl₂O₄ – расчет проводился на 0,5 г конечного вещества

Состав, х:	0,1	0,3	0,5
т,г после осаждения	0,57	0,68	0,67
т,г после горелки	0,41	0,46	0,48
т, г после 900 печь	0,36	0,40	0,42
т, г после 1200 печь	0,36	0,38	0,41
Выход, %	72	76	82

 $ZnAl_{(2-2x)}Cr_{2x}O_4$ – расчет проводился на 1 г конечного вещества для составов x=0,2; 0,4; 0,6; и на 0,5 г конечного вещества для состава x=0,8.

Состав, х:	0,2	0,4	0,6	0,8
m,г после осаждения	1,37	1,38	1,19	0,68
m,г после горелки	0,94	0,97	0,82	0,48
m,г после 900 печь	0,87	0,91	0,76	0,46
m,г после 1200 печь	0,85	0,90	0,76	0,45
Выход, %	85	90	76	90

Соосаждение оксалатов

Соосаждение оксалатов проводилось для составов Zn_(1-x)Ni_xO, где x: 0,3; 0,7. Взаимодействие протекает по реакции:

 $(1-x) (NH_4)_2Ni(SO_4)_2 \cdot 6H_2O + x(NH_4)_2Zn(SO_4)_2 \cdot 6H_2O + 2(NH_4)_2C_2O_4 = 4(NH_4)_2SO_4 + (1-x)NiC_2O_4 \cdot 2H_2O\downarrow + x ZnC_2O_4 \cdot 2H_2O\downarrow + 2H_2O$

Расчеты навесок на 0,5г. конечного вещества:

X:	0.3	0.7
m(Ni шенит)	0,75	1,80
m(Zn шенит)	1,77	0,78
$m((NH_4)_2C_2O_4)$	0,94	0,97

Для проведения реакции готовим горячие насыщенные растворы шенитов металлов (никеля и цинка) и горячий насыщенный раствор оксалата аммония (взятого с 10% избытком) в соответствии с расчетами и данными растворимости. По палочке выливаем раствор солей металлов в оксалат аммония. При этом наблюдается выпадение осадка, цвет которого зависит от значения х: чем больше х, тем насыщенней зеленый цвет. При х=0,3 цвет бледно-зеленый. После фильтрования и высушивания, образец подвергается прокаливанию на горелке. При этом происходят реакции:

 $NiC_2O_4 = CO\uparrow + NiO + CO_2\uparrow$ $ZnC_2O_4 = CO\uparrow + ZnO + CO_2\uparrow$

Причем выделяющийся СО может вспыхнуть в пламени горелки, и тогда внутри тигля начнется горение, что наблюдалось при прокаливании некоторых образцов.

После окончания выделения газов, образцы были перетерты и поставлены в печь сначала на 900 потом на 1200. После 1-го отжига вещества были взвешены, и часть была отсыпана. Массы получившихся образцов:

X:	0.3	0.7
т, г, до прокаливания на горелке	1,3	1,45
m, г, после отжига 900	0,43	0,47
m, г, после отжига 1200	0,43	0,46
Выход, %	86	92

Анализ полученных результатов

В ходе 10-ти недельного практикума было получено:

- Три образца составов Zn_{0,9}Ni_{0,1}Al₂O₄, Zn_{0,7}Ni_{0,3}Al₂O₄, Zn_{0,5}Ni_{0,5}Al₂O₄ двумя методами из твердой фазы и гидрокарбонатным соосаждением. Были отобраны пробы отожженные только на 900.
- Три образца составов ZnAl_{1,6}Cr_{0,4}O₄, ZnAl_{1,2}Cr_{0,8}O₄, ZnAl_{0,8}Cr_{1,2}O₄ двумя методами из твердой фазы и гидрокарбонатным соосаждением, и методом соосаждения ZnAl_{0,4}Cr_{1,6}O₄. Были отобраны пробы отожженные только на 900.
- Три образца составов Zn_{0,9}Ni_{0,1}O, Zn_{0,7}Ni_{0,3}O, Zn_{0,3}Ni_{0,7}O методом соосаждения оксалатов. Были отобраны пробы, отожженные только на 900.
- 4.

1. Никельсодержащие составы

Zn_{0,7}Ni_{0,3}Al₂O₄ - твердофазный метод

cubi c	F-centred c	ell param	eters:				
	a = 8	3.076(2)					
	Volume =	526.7(3)					
F(5)	= 32.5(0.0	171, 9)				
M(5)	= 136.9(1	. 99, 9)				
Ν	2Th(obs)	D(obs)	Q(obs)	l/lo	hkl	Q(cal c)	del taQ
1*	31.306	2.8549	1226.93	10	220	1226. 57	0.36
2*	36.866	2.4362	1684.90	20	311	1686.53	-1.63
3*	55.715	1. 6485	3679.78	0	422	3679.70	0. 08
4*	59.389	1.5550	4135.61	0	511	4139.67	-4.06
5*	65.337	1. 4271	4910.11	20	4 4 0	4906.27	3.84

Zn_{0,7}Ni_{0,3}Al₂O₄ – гидрокарбонатное осаждение

cubic F	-centred o	cell param	eters:						
	a = 1	8.0754(6)							
١	/olume =	526.6(1)							
F(10)	= 50.5(0.	0141, 1	4)						
M(10)	= 142.6(1.69, 1	4)						
Ν	2Th(obs)	D(obs)	Q(obs)	l/lo	h	k	I	Q(cal c)	del taQ
1*	31. 286	2.8568	1225.29	100	2	2	0	1226.78	-1.49
2*	36.861	2.4365	1684.48	100	3	1	1	1686.82	-2.34
3	44.853	2.0191	2452.93	20	4	0	0	2453.56	-0.64
4	49.155	1.8520	2915.53	5	3	3	1	2913.60	1.93
5*	55.724	1.6482	3681.12	50	4	2	2	3680.34	0.78
6*	59.425	1.5541	4140.40	100	5	1	1	4140.38	0.01
7*	65.336	1.4271	4910.11	100	4	4	0	4907.12	2.99
8	74.226	1.2766	6136.07	10	6	2	0	6133.90	2.17
9	77.409	1.2319	6589.45	20	5	3	3	6593.94	-4.50
10	78.506	1.2174	6747.35	0	6	2	2	6747.29	0.06

Из сравнения рентгенограмм видно, что образец Zn_{0.7}Ni_{0.3}Al₂O₄, полученный методом гидрокарбонатного осаждения, закристаллизован лучше. Т.е. интенсивность линий больше, чем в случае твердофазного метода, их число также больше, что полностью соответствует литературным данным (все линии совпали с эталонными рентгенограммами). В ходе анализирования образцов, отожженных на 900 и 1200 градусов, для никельсодержащих составов, было выяснено, что повторный отжиг (1200) не привел к изменению вида рентгенограммы. Образец хорошо закристаллизован после 1-го отжига. Это полностью согласуется с литературными данными.

2. Хромсодержащие составы

ZnAl_{0.8}Cr_{1.2}O₄ - твердофазный метод

Шпинельная фаза

cubic F-centred cell parameters:

8.209(1) a = Volume = 553.3(3) F(10) = 29.3(0.0263)13) M(10) = 83.5(3.00)13)

N 2Th(obs) D(obs) Q(obs) I/I. 1 30.784 2.9021 1187.34 90 2* 31.782 2.8132 1263.57 20 3* 34.456 2.6008 1478.38 20 4* 36.272 2.4747 1632.88 10 5 37.886 2.3729 1775.99 0 6 44.108 2.0515 2376.06 20 7* 47.550 1.9107 2739.15 10 8 48.317 1.8822 2822.72 5 9 54.756 1.6751 3563.84 30 10* 56.597 1.6249 3787.45 25 11 58.396 1.5790 4010.84 90 12* 62.853 1.4773 4582.08 20 13 64.137 1.4508 4751.00 100 14* 67.907 1.3792 5257.09 50 15 69.040 1.3593 5412.14 0 16 75.948 1.2519 6380.59 20 17 76.926 1.2384 6520.46 0

Q(cal c)

1187.02

1632.15

1780.53

2374.04

2819.17

3561.05

4006.19

4748.07

6380.22

6528.60

3.56

2.79

4.66

2.93

0.37

-8.14

hkl

220

3 1 1

222

400

331

422

511

4 4 0

533

622

a = C = 5.206(2) Volume = 47.66(2) F(9) = 39.0(0.0192)12) M(9) = 133.6(2.03)12) del taQ hkl Q(cal c) del taQ 0.32 100 1261.23 2.34 0 0 2 1476.13 2.25 101 1630.26 0.73 2.62 -4.53 2.02 102 2737.35 1.79

Твердый раствор на основе ZnO

hexagonal P-centred cell parameters:

3.2514(5)

1 1 0	3783.68	3.77
103	4582. 51	-0. 43
1 1 2 2 0 1	5259. 81 5413. 94	-2.72 -1.80
202	6521.03	-0.58

ZnAl_{0.8}Cr_{1.2}O₄ - гидрокарбонатное осаждение

Шпинельная фаза

in stin .

Твердый раствор на основе ZnO

cubi c	F-centred	l cell pa	rameters:			-		See.	hexagonal	P-centi	∼ed	cel	I paramet	ers:
	a = 8.	2103(9)				- Carl				а	=	3.	2496(3)	
				Sec. 12		100		i.		С	=	5.	2032(9)	
	Volume =	= 553.	5(2)			200				Vc	lum	ie =	47.5	83(8)
F(11)	= 26.4(0. 0261,	16)	100						F(9)	=	90.4(0.00	83, 12)
M(11)	= 98.5(2.07,	16)					Contraction of the local distance		М(9)	= 3	32.0(0.	82, 12)
N	2Th(obs)	D(obs)	0(obs)	1/10	h	k	ī	0(calc)	del ta0	h	k	ī	0(calc)	del ta0
1*	18. 571	4, 7740	438.77	0	1	1	1	445.04	-6. 27			•	2(00.0)	
2*	30. 760	2.9044	1185.46	100	2	2	0	1186. 78	-1.32					
3	31.762	2.8150	1261.95	15						1	0	0	1262.67	-0. 72
4	34.443	2. 6018	1477.24	15						0	0	2	1477.49	-0.24
5*	36.236	2. 4771	1629. 72	100	3	1	1	1631.82	-2.10	1	0	1	1632.04	-2.32
6*	37.902	2.3719	1777.49	0	2	2	2	1780. 17	-2.68					
7*	44.064	2.0534	2371.66	20	4	0	0	2373.56	-1.90					
8	47.559	1. 9104	2740.01	5						1	0	2	2740. 15	-0. 15
9*	48.250	1. 8846	2815.54	0	3	3	1	2818.60	-3.06					
10*	54.732	1. 6757	3561.29	15	4	2	2	3560. 34	0.95					
11	56.620	1. 6243	3790. 25	5						1	1	0	3788.00	2.24
12*	58.363	1. 5798	4006.78	100	5	1	1	4005.38	1.40					
13	62.900	1. 4764	4587.67	0						1	0	3	4587.01	0.66
14*	64. 123	1. 4511	4749.03	80	4	4	0	4747.12	1. 92					
15	67.968	1. 3781	5265.49	5						1	1	2	5265.49	-0.00
16	69.092	1. 3584	5419.32	0						2	0	1	5420. 04	-0.73
17*	75.942	1. 2520	6379.57	5	5	3	3	6378.94	0.63					
18*	76.976	1. 2377	6527.84	0	6	2	2	6527.29	0.55	2	0	2	6528.16	-0.32

Судя по виду рентгенограммы (интенсивность, число линий) можно утверждать, что образец ZnAl_{0.8}Cr_{1.2}O₄, полученный методом гидрокарбонатного осаждения, закристаллизован лучше.

Образцы нижеприведенных составов тоже хорошо закристаллизованы, что видно из их рентгенограмм. Образцы, полученные твердофазным методом, отожжены при 1200°С. Наши результаты хорошо согласуются с литературными данными (в них указано образование твердых растворов до концентрации Cr 50%).

ZnAl_{1,6}Cr_{0,4}O₄

cubic F	-centred c	ell param	eters:					
	a = 8	8.1347(8)						
١	/olume =	538.3(2)						
F(8) =	= 51.9(0.0	0140, 11)					
M(8) =	= 168.9(1	. 63, 11)					
Ν	2Th(obs)	D(obs)	Q(obs)	l/lo	hkl	Q(cal c)	del taQ	
1*	31.092	2.8741	1210. 59	60	220	1208.95	1.63	
2*	36.606	2.4528	1662.17	100	3 1 1	1662.31	-0.14	4
3*	44.506	2.0341	2416.88	15	400	2417.91	-1.03	
4*	48.791	1.8650	2875.03	5	331	2871.27	3.76	3 - 1
5*	55.294	1.6600	3628.97	40	422	3626.86	2. 11	-
6*	58.953	1.5654	4080.84	80	511	4080. 22	0. 61	
7	64.765	1.4383	4833.94	90	4 4 0	4835.82	-1.88	
8	73.569	1.2864	6042.94	10	620	6044.77	-1.84	

ZnAl_{1,2}Cr_{0,8}O₄

cubic F-centred cell parameters: a = 8.182(2)Volume = 547.7(4) F(9) = 23.4(0.0320, 12) M(9) = 67.1(3.71, 12)

Ν	2Th(obs)	D(obs)	Q(obs)	1/10	hkl	Q(cal c)	del taQ
1*	30.884	2.8930	1194.82	70	220	1195.13	-0.31
2*	36.376	2.4678	1642.03	100	311	1643.31	-1.28
3	38.035	2.3639	1789.54	0	222	1792.70	-3.16
4*	44.239	2.0457	2389.55	10	400	2390. 26	-0.71
5	48.395	1.8793	2831.44	5	331	2838.44	-7.00
6*	55.017	1.6677	3595.54	20	4 2 2	3585.40	10. 14
7	58.543	1.5754	4029.20	80	333	4033.57	-4.38
8	64.343	1.4467	4777.97	90	4 4 0	4780.53	-2.56
9*	73.116	1. 2932	5979.55	20	620	5975.66	3.89

При высоких концентрациях хрома (в нашем случае 80%) наблюдается хорошая закристаллизованность шпинели:

$ZnAl_{0,4}Cr_{1,6}O_4$ – гидрокарбонатное осаждение

cubic I	-centred o	cell parar	meters:						
	a =	8.275(1)							
١	/olume =	566.5(2))						
F(10)	= 24.4(0.	. 0273, 🦷	15)						
M(10)	= 83.0(2.58,	15)						
Ν	2Th(obs)	D(obs)	Q(obs)	l/lo	h	k	Т	Q(cal c)	del taQ
1*	18.486	4.7956	434.82	5	1	1	1	438.16	-3.34
2*	30. 504	2.9282	1166.27	80	2	2	0	1168.43	-2.16
3	35.944	2.4965	1604.49	100	3	1	1	1606.59	-2.10
4*	37.598	2.3904	1750.08	0	2	2	2	1752.64	-2.56
5*	43.694	2.0700	2333. 78	20	4	0	0	2336.85	-3.08
6*	54.286	1. 6885	3507.50	20	4	2	2	3505.28	2.22
7*	57.836	1.5930	3940.66	50	5	1	1	3943.44	-2.79
8*	63.550	1.4628	4673.37	50	4	4	0	4673.71	-0.34
9*	75.284	1.2613	6285.84	0	5	3	3	6280.30	5.54
10*	76.257	1.2476	6424.65	0	6	2	2	6426.35	-1.70

3.Cucmeмa ZnO - NiO

Ниже приведены рентгенограммы образцов составов: Zn_{0,7}Ni_{0,3}O, Zn_{0,3}Ni_{0,7}O.

Zn_{0,3}Ni_{0,7}O

cubi c	F-centred	cell param	neters:	
	a =	4.2073(4)		
	Volume =	74.48(2	!)	
F(5)	= 72.9(0.	0137, 5	5)	
M(5)	= 436.6(1.55, 5	5)	
Ν	2Th(obs)	D(obs)	Q(obs)	l/lo
1*	36.971	2.4294	1694.35	100

Ν	2Th(obs)	D(obs)	Q(obs)	l/lo	hkl	Q(cal c)	del taQ
1*	36.971	2.4294	1694.35	100	111	1694.77	-0.43
2*	42.968	2.1033	2260.46	100	200	2259.70	0.77
3*	62.356	1.4879	4517.02	10	220	4519.40	-2.37
4*	74.767	1. 2687	6212.72	100	311	6214.17	-1.44
5*	78.748	1.2143	6781.85	100	222	6779.09	2.75

Исходя из литературных данных, твердый раствор NiO в ZnO при x=0.3 уже не образуется при 1200°С (как видно из приведенной фазовой диаграммы системы ZnO - NiO). Это полностью согласуется с данными рентгенограмм. Образец состава $Zn_{0,3}Ni_{0,7}O$ однофазный, отжиг при температуре 900°С оказывается достаточным.

Zn_{0,7}Ni_{0,3}O

$a = 3.2468(3)$ $c = 5.200(1)$ $Vol ume = 47.47(1)$ $F(10) = 65.9(0.0117, 13)$ $M(10) = 195.7(1.29, 13)$ $N 2Th(obs) D(obs) O(obs) I/Io h k I O(cal c) del ta$ $1^* 31.785 2.8130 1263.75 90 1 0 0 1264.84 -1.10$ $2^* 34.464 2.6002 1479.06 50 0 0 2 1479.44 -0.38$ $3^* 36.278 2.4743 1633.41 100 1 0 1 1634.70 -1.29$	2 4 1000(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 1000(7)
Vol ume = $47.47(1)$ F(10) = $65.9(0.0117, 13)$ M(10) = $195.7(1.29, 13)$ N2Th(obs)D(obs)Q(obs)I/Iohk IQ(cal c)del ta1* 31.785 2.8130 1263.75 90101264.84-1.102* 34.464 2.60021479.06500021479.44-0.383* 36.278 2.4743 1633.41 1001010101010101010101010100000000001000<	a = 4.1999(1)
$ \begin{array}{c} F(10) = \ 65.\ 9(0.\ 0117, \ 13) \\ M(10) = \ 195.\ 7(\ 1.\ 29, \ 13) \\ \end{array} \\ \begin{array}{c} N \ 2Th(obs) \ D(obs) \ O(obs) \ I/Io \ h \ k \ I \ O(cal \ c) \ del \ ta \\ 1^{*} \ 31.\ 785 \ 2.\ 8130 \ 1263.\ 75 \ 90 \ 1 \ 0 \ 0 \ 1264.\ 84 \ -1.\ 10 \\ 2^{*} \ 34.\ 464 \ 2.\ 6002 \ 1479.\ 06 \ 50 \ 0 \ 0 \ 2 \ 1479.\ 44 \ -0.\ 38 \\ 3^{*} \ 36.\ 278 \ 2.\ 4743 \ 1633.\ 41 \ 100 \ 1 \ 0 \ 1 \ 0 \ 1 \ 634.\ 70 \ -1.\ 29 \\ \end{array} $	Volume = 74.08(4)
M(10) = 195.7(1.29, 13) N 2Th(obs) D(obs) Q(obs) I/Io h k I Q(cal c) del ta 1* 31.785 2.8130 1263.75 90 1 0 0 1264.84 -1.10 2* 34.464 2.6002 1479.06 50 0 0 2 1479.44 -0.38 3* 36.278 2.4743 1633.41 100 1 0 1 1634.70 -1.29	F(5) = 43.0(0.0233, 5)
N 2Th(obs) D(obs) Q(obs) I/Io h k I Q(cal c) del ta 1* 31.785 2.8130 1263.75 90 1 0 0 1264.84 -1.10 2* 34.464 2.6002 1479.06 50 0 0 2 1479.44 -0.38 3* 36.278 2.4743 1633.41 100 1 0 1 1634.70 -1.29	M(5) = 253.2(2.69, 5)
1* 31. 785 2. 8130 1263. 75 90 1 0 1264. 84 -1. 10 2* 34. 464 2. 6002 1479. 06 50 0 0 2 1479. 44 -0. 38 3* 36. 278 2. 4743 1633. 41 100 1 0 1 1634. 70 -1. 29	nQ hkl Q(calc) deltaQ
2* 34.464 2.6002 1479.06 50 0 2 1479.44 -0.38 3* 36.278 2.4743 1633.41 100 1 0 1 1634.70 -1.29)
3* 36. 278 2. 4743 1633. 41 100 1 0 1 1634. 70 -1. 29	3
)
4 37.009 2.4271 1697.56 90	1 1 1 1700.79 -3.23
5 43.011 2.1012 2264.98 100	2 0 0 2267.72 -2.73
6* 47. 570 1. 9100 2741. 15 75 1 0 2 2744. 29 -3. 14	l de la constante de
7* 56. 645 1. 6236 3793. 52 100 1 1 0 3794. 53 -1. 02	2
8 62. 500 1. 4849 4535. 30 100	2 2 0 4535.44 -0.14
9* 62. 944 1. 4754 4593. 89 100 1 0 3 4593. 59 0. 29)
10* 66. 435 1. 4061 5057. 87 50 2 0 0 5059. 37 -1. 51	
11* 68. 047 1. 3767 5276. 20 100 1 1 2 5273. 98 2. 23	3
12* 69. 176 1. 3570 5430. 51 80 2 0 1 5429. 24 1. 27	,
13 74. 912 1. 2666 6233. 34 90	3 1 1 6236.23 -2.88
14* 77.057 1.2366 6539.45 10 2 0 2 6538.82 0.64	l de la construcción de la constru
15 78. 921 1. 2120 6807. 61 10	

Ниже приведена рентгенограмма образца состава ZnAl_{0,8}Cr_{1,2}O₄, полученная на дифрактометре ДРОН-3М. Она содержит те же отражения, что и рентгенограмма этого образца, полученная в камере Гинье, т.е. чувствительность дифрактометра ДРОН в нашем случае вполне достаточна для определения фазового состава образцов.

<u>Выводы</u>

1. Состав полученных образцов полностью соответствует литературным данным. Шпинели составов $Zn_{(1-x)}Ni_xAl_2O_4$ образуют непрерывный ряд твердых растворов (в условиях нашей работы x<0,5). Шпинели составов $ZnAl_{(2-2x)}Cr_{2x}O_4$ образуют непрерывный ряд твердых растворов при x<0.4 (по лит. данным до 0,5). Образец состава $ZnAl_{0,4}Cr_{1,6}O_4$ однофазен. Образец состава $ZnAl_{0,8}Cr_{1,2}O_4$ двухфазен при отжиге до 1200.

2. Образцы, полученные методом гидрокарбонатного осаждения лучше закристаллизованы, чем образцы полученные твердофазным методом.

3. Чувствительности дифрактометра ДРОН в нашем случае вполне достаточно для определения фазового состава образцов.

4. Отчетливо видна закономерность увеличения параметра элементарной ячейки с увеличением количества хрома в составах и $ZnAl_{(2-2x)}Cr_{2x}O_4$. Т.к. хром крупнее алюминия, то при увеличении х, параметр решетки увеличивается, что отчетливо видно из приведенных выше рентгенограмм.

Список использованной литературы

- 1. Вест А. Химия твердого тела, т.1 М.: Мир, 1988
- 2. Капитанова О., Романчук А. Отчет по десятинедельному практикуму: «Исследование системы ZnO-NiO-Al₂O₃.», 2005
- 3. Коттон Ф., Уилкинсон Дж. Современная неорганическая химия, т. 3 М: Мир, 1969
- 4. Минералы. Справочник, т. 2 М., 1967
- Начала химического эксперимента: методическая разработка к практикуму. / А.И.Баранов, П.С.Бердоносов, Д.О.Чаркин – М., 2005
- Практикум по неорганической химии: Учеб. пособие / Под ред. В.П.Зломанова. М.: Изд-во МГУ, 1994
- Практикум по неорганической химии: Учебное пособие для студ. высш. учеб. заведений. / В.А.Алешин, К.М.Дунаев, А.И.Жиров и др.; Под редакцией Ю.Д.Третьякова – М.: «Академия», 2004
- 8. Справочник по растворимости, т.1 М.: Изд-во АН СССР, 1962
- 9. Справочник химика, т. 3 М: Химия, 1965
- 10. Уэллс А. Структурная неорганическая химия. «Мир», 1987