Московский Государственный Университет им. М. В. Ломоносова Факультет Наук о Материалах

ОТЧЕТ

по десятинедельному практикуму «Синтез и исследование шпинелей состава $Mg_{(1-x)}Ni_xAl_2O_4$ »

Г. Сарлова, А. Акбашев

Научные руководители: Ю.М. Коренев, Зайцев Д.Д.

Москва, 2005

Содержание

Содержание	2
Введение	3
Литературный обзор	4
Экспериментальная часть работы	
Синтез исходных реагентов	6
Синтез шпинелей	6
Анализ результатов	9
Выводы	10
Приложение	11
Список литературы	

Введение

В настоящее время остро стоит проблема синтеза материалов с заданными химическими и физическими свойствами. Синтез соответствующих веществ, называемых шпинелями, описывается в данной работе. Шпинели используются в качестве катализаторов (например, при разложении перекиси водорода), в качестве цветовой основы для красителей. Так как получение $Mg_{(1-x)}Ni_xAl_2O_4$ путем прямого отжига оксидов магния, никеля и алюминия затруднительно (из-за необходимости использования высоких температур порядка $1300^{\circ}C$), то для получения веществ использовались 2 метода синтеза шпинели:

- сплавление предварительно полученных квасцов и шенитов;
- метом карбонатного соосаждения.

Цель и задачи работы

Целью данной работы является получение сложных оксидов состава $Mg_{(1-x)}Ni_xAl_2O_4$ двумя способами: из сульфатов магния и никеля и аммония алюминия при карбонатном соосаждении и из гидроксидов магния, никеля и алюминия при использовании предварительного отжига на газовой и воздуходувной горелках.

Последовательность синтеза:

- 1. Спекание магний- и никель-аммонийных шенитов с алюмоаммонийными квасцами с предварительным отжигом на газовой и воздуходувной горелках.
- 2. Соосаждение гидроксидов магния, никеля и алюминия из магний- и никель-аммонийных шенитов и алюмоаммонийными квасцов с помощью гидрокарбоната натрия.

(декантация, высушивание, разложение до оксидов)

3. Спекание полученных веществ в пункте 1 и 2.

Литературный обзор

Шпинели (*от немец. Spinnel, умен. от лат. spina — шип, терновник: по форме кристаллов*) — минералы класса сложных оксидов общей формулы AM_2O_4 , где $A-Mg^{2+}$, Zn^{2+} , Mn^{2+} , Fe^{2+} , Ni^{2+} , Co^{2+} , $M-Al^{3+}$, Mn^{3+} , Fe^{3+} , V^{+3} , Cr^{3+} , Ti^{4+} . Шпинели — системы твердых растворов с широким изоморфизмом катионов A и M; в пределах каждого изоморфного ряда смесимость минералов полная, между членами различных рядов ограниченная. Шпинели кристаллизуются в кубической сингонии, образуя главным образом октаэдрические кристаллы. Элементарная ячейка шпинели содержит 32 атома O, 8 атомов Mg и 16 атомов Al.

Цвет шпинели определяется степенью окисления основных катионов и наличием примесей. Для $MgAl_2O_4$ а = 0.8084 нм. Плотность 3.55 г/см³. Разложение катионов нормальное (в элементарной ячейке тетраэдров занято катионами Mg^{2+} , 16 октаэдров – катионами Al^{2+}).

Трансляция — операция симметричного преобразования путем параллельного переноса. В примитивных решетках все трансляции являются суммой целых трансляций по ребрам элементарной ячейки; в центрированных есть также трансляции на половину объемной, граневой или всех трех граневых диагоналей, соответственно этому они называют объемно-, базо- и гранецентрированными. Шпинель обладает гранецентрированной кубической решеткой (ГЦК)

Все шпинели отличаются высокой твердостью (5-8 по минералогической шкале), термической и химической стойкостью. Большинство шпинелей растворимо в концентрированных кислотах и все растворимы в растворах $KHSO_4$ и Na_2CO_3 . Шпинели — главные носители магнитных свойств горных пород. Магниевая шпинель, относящаяся к нормальным шпинелям, имеет низкую электропроводимость.

Для шпинелей характерны высокотемпературные условия образования; они устойчивы к выветриванию, образуют россыпи. В природе шпинели часто встречаются в виде акцессорных минералов (входят в состав горных пород в количествах менее 1% по массе).

Литература

- 1. Н. Я. Турова «Неорганическая химия в таблицах», Москва, 1997 г.
- 2. Ф. Котон, Дж. Уилкинсон «Современная неорганическая химия», издательство «МИР», Москва, 1969.
- 3. М.Е. Тамм, Ю.Д. Третьяков «Неорганическая химия», 1 том, издательство «Академия», 2004 г.

Cинтез $NiAl_2O_4$. Реакция:

 $(NH4)_2Ni(SO_4)_2 \cdot 6H_2O + 2NH_4Al(SO_4)_2 \cdot 12H_2O \rightarrow 6SO_2\uparrow + 4NH_3\uparrow + NiAl_2O_4 + 32H_2O + 9O_2.$

Для получения 1 г шпинели требуется 2,235 г никелевого шенита, 5,128 г алюмоаммонийных квасцов.

Cинтез $Mg_{(l-x)}Ni_xAl_2O_4$. Реакция:

 $(1-x)(NH_4)_2Mg(SO_4)_2\cdot 6H_2O + 2NH_4Al(SO_4)_2\cdot 12H_2O + \\ x(NH_4)_2Ni(SO_4)_2\cdot 6H_2O \to Mg_{(1-x)}Ni_xAl_2O_4 + 4NH_3\uparrow + 6SO_2\uparrow + 4O_2\uparrow + \\ 32H_2O$

Для получения 2 г шпинели надо: $m(Mg\text{-шенит}) = 721*(1\text{-x})/(174.9\text{-}34.4*x) \ \Gamma;$ $m(Ni\text{-шенит}) = 789.9*x/(174.9\text{-}34.4*x) \ \Gamma;$ $m(Al\text{-квасцов}) = 1811.92/(174.9\text{-}34.4*x) \ \Gamma.$ $\Pi \text{ри } x = 0,7 \text{: } m(Mg\text{-шенит}) = 1.314 \ \Gamma,$ $m(Ni\text{-шенит}) = 3.3592 \ \Gamma;$ $m(Al\text{-квасцов}) = 11.0094 \ \Gamma.$ $\Pi \text{ри } x = 0,2 \text{: } m(Mg\text{-шенит}) = 3.9137 \ \Gamma,$ $m(Ni\text{-шенит}) = 1.0718 \ \Gamma;$ $m(Al\text{-квасцов}) = 12.2942 \ \Gamma.$

Благодарности

Выражаем благодарность Кореневу Ю.М., Жирову А.И., Вересову А.Г., Зайцеву Д.Д. и всем, кто помог нам при выполнении данной работы.

Крупные промышленные скопления образуют только ферришпинели и хромошпинели — важные руды для получения Cr, выплавки Fe и попутного извлечения V; многие минералы применяют в качестве катализаторов химико-технологических процессов (например, в синтезе этилен оксида), в производстве керамики, огнеупоров, термостойких красок.

Известно большое число синтетических шпинелей (получают сплавлением или спеканием соответствующих оксидов при 1400-1920°С, а так же нагреванием Al- Mg- содержащих минералов, например мусковита), в которых кроме катионов, характерных для природных минералов, могут содержаться ионы Ca, Li, Cd, W, Cu, Ga, Ge, Ag, Sb, Nb, In. Как разновидность ферритов эти шпинели лежат в основе разнообразных магнитных материалов и диэлектриков, используемых для изготовления элементов запоминающих устройств ЭВМ.

Экспериментальная часть

Приложение

Синтез прекурсоров.

Получение никель-аммонийных шенитов:

Было смешано 14,22 г сульфата никеля и 6,69 г сульфата никеля при 80°С в соответствии с стехиометрическими коэффициентами этой реакции:

$$(NH_4)_2SO_4 + NiSO_4 \cdot 7H_2O \rightarrow (NH_4)_2Ni(SO_4)_2 \cdot 6H_2O + H_2O_{\bullet}$$

После охлаждения полученного раствора выпадает голубой осадок (никель-аммонийный шенит), т.к. растворимость шенита меньше, чем растворимость исходных реагентов.

Получение магний-аммонийных шенитов:

Было смешано 13,65 г сульфата магния и 7,33 г сульфата аммония при 80°С в соответствии с стехиометрическими коэффициентами этой реакции:

$$(NH_4)_2SO_4 + MgSO_4 \cdot 7H_2O \rightarrow (NH_4)_2Mg(SO_4)_2 \cdot 6H_2O + H_2O_{\bullet}$$

После охлаждения полученного раствора выпадает голубой осадок (магний-аммонийный шенит), т.к. растворимость шенита меньше, чем растворимость исходных реагентов.

Полученные шениты отфильтровали на воронке Вюхнера и высушили на чаше Петри на воздухе.

Синтез шпинелей.

Отжиг на газовой и воздуходувной горелках.

Тщательно перетертые в ступке смеси никель- и магний-аммонийных шенитов сначала нагрели на газовой горелке под вытяжкой до удаления кристаллогидратной воды. После этого полученные и заново перетертые смеси шенитов под вытяжкой нагревались на воздуходувной горелке до прекращения газовыделений.

Расчеты.

 $M[(NH_4)_2Ni(SO_4)_2\cdot 6H_2O] = 394.9 \ г/моль;$ $M[(NH_4)_2Mg(SO_4)_2\cdot 6H_2O] = 360.5 \ г/моль;$ $M[NH_4Al(SO_2)_2\cdot 12H_2O] = 452.98 \ г/моль;$ $M[(NH_4)_2SO_4] = 132.1 \ г/моль;$

Cинтез $(NH_4)_2Ni(SO_4)_2\cdot 6H_2O$. $M[NiSO_4\cdot 7H_2O] = 280.8$ г/моль; Реакция:

$$(NH_4)_2SO_4 + NiSO_4 \cdot 7H_2O \rightarrow (NH_4)_2Ni(SO_4)_2 \cdot 6H_2O + H_2O$$

Для получения 20 г шенита требуется 14,221 г семиводного сульфата никеля, 6,690 г сульфата аммония и 12,527 г воды.

Cинтез $(NH_4)_2Mg(SO_4)_2\cdot 6H_2O$. $M[MgSO_4\cdot 7H_2O] = 246.1 г/моль; Реакшия:$

$$(NH_4)_2SO_4 + MgSO_4 \cdot 7H_2O \rightarrow (NH_4)_2Mg(SO_4)_2 \cdot 6H_2O + H_2O$$

Для получения 20 г шенита требуется 13,653 г семиводного сульфата магния, 7,329 г сульфата аммония и 13,053 г воды.

Cинтез $MgAl_2O_4$. Реакшия:

 $(NH4)_2Mg(SO_4)_2 \cdot 6H_2O + 12NaHCO_3 + 2NH_4Al(SO_4)_2 \cdot 12H_2O \rightarrow 6CO_2\uparrow + 4NH_3\uparrow + 6Na_2SO_4 + MgAl_2O_4 + 4H_2O.$

Для получения 1 г шпинели требуется 2,5346 г магниевого шенита, 6,3699 г алюмоаммонийных квасцов и 6,6811 г NaHCO₃ (с 10% избытком).

Выводы

- Была синтезирована система оксидов MgO-NiO-Al₂O_{3.}
- Были освоены методы предварительного обжига и соосаждения для синтеза соединения.
- При помощи рентгенофазного анализа были исследованы вещества.
- Химические и физические свойства соединений оказались схожи с предсказуемыми.
- ullet При изменении X от 0 до 1 вещество меняет свой цвет от белого до светло-синего.
- Лучше спекаются вещества, полученные соосаждением.

При обжиге проходила следующая реакция:

$$(1-x)(NH4)_2Mg(SO_4)_2 \cdot 6H_2O + 2NH_4Al(SO_4)_2 \cdot 12H_2O + x(NH_4)_2Ni(SO_4)_2 \cdot 6H_2O \rightarrow 4NH_3\uparrow + 4SO_2\uparrow + 2O_2\uparrow + 39H_2O + Al_2O_3 + MgSO_4 + NiSO_4.$$

Метод соосаждения.

В 1 литр воды при 80°С были всыпаны смешанные между собой в стехиометрических соотношениях и перетертые в ступке никель-, магний-аммонийные шениты, алюмоаммонийные квасцы и гидрокарбонат натрия (с 10% избытком). Стакан с водой был поставлен на магнитную мешалку.

В результате происходили следующие реакции:

$$(NH_4)_2Mg(SO_4)_2 + 2NaHCO_3 \rightarrow Mg(OH)_2\downarrow + 2CO_2\uparrow + 2NH_3\uparrow + Na_2SO_4.$$

 $(NH_4)_2Ni(SO_4)_2 + 2NaHCO_3 \rightarrow Ni(OH)_2\downarrow + 2CO_2\uparrow + 2NH_3\uparrow + Na_2SO_4.$
 $(NH_4)Al(SO_4)_2 + 3NaHCO_3 \rightarrow Al(OH)_3\downarrow + 3CO_2\uparrow + NH_3\uparrow + 3/2 Na_2SO_4 + 1/2(NH_4)_2SO_4.$

После выпадения осадка слой жидкости был декантирован, а полученный осадок промывался дистиллированной водой. Сливаемую воду проверяли на наличие ионов ${\rm SO_4}^{2-}$, прибавляя к ней раствор нитрата бария:

$$Ba(NO_3)_2 + SO_4^{2-} \rightarrow BaSO_4 \downarrow + 2NO_3.$$

При этом если полученная смесь была белого цвета, то осадок продолжали промывать. Полученный осадок отфильтровали на бумажном фильтре, высушили в сушильном шкафу.

Отжиг в печи.

Образцы сначала поставили в печь при температуре 900° C на 2 часа. Так как анализ показал, что этого недостаточно, образцы затем прошли отжиг при температуре 1200° C (в течение 2 часов). Были получены порошки состава $NiAl_2O_4$, $Mg_{0.3}Ni_{0.7}Al_2O_4$, $Mg_{0.8}Ni_{0.2}Al_2O_4$ и $MgAl_2O_4$.

При соосаждении:

 $(1-x)Mg(OH)_2 + xNi(OH)_2 + 2Al(OH)_3 \rightarrow Mg_{(1-x)}Ni_xAl_2O_4 + 4H_2O\uparrow + 2O_2\uparrow.$ При сплавлении:

$$(1-x)MgSO_4 + xNiSO_4 + Al_2O_3 \rightarrow Mg_{(1-x)}Ni_xAl_2O_4 + SO_2\uparrow + 5/2O_2\uparrow.$$

Анализ результатов

Результаты экспериментов по синтезу могут быть представлены в виде следующей таблицы:

	$MgAl_2O_4$	$Mg_{0.3}Ni_{0.7}Al_2O_4$		$Mg_{0.8}Ni_{0.2}Al_2O_4$		NiAl ₂ O ₄
		900°C	1200°C	900°C	1200°C	
Цвет	Белый	Синеватый	Светло-	Светло-	Более	Светло-
			синеватый	голубой	светло-	Синий
					голубой	
РФА	-	-	Кубическая	-	-	-
			структура			
Метод	Соосаждение	Обжиг/	Обжиг/	Обжиг	Обжиг	Обжиг
		соосаждение	соосаждение			