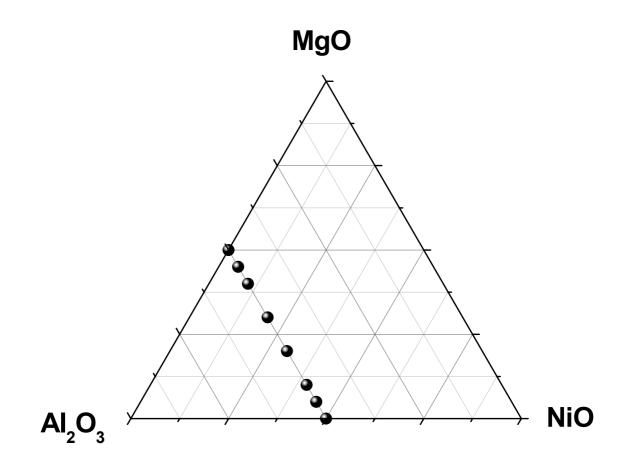
Отчет о проделанной работе в течение десятинедельного практикума.

Московский Государственный Университет Имени М. В. Ломоносова Факультет Наук о Материалах

Синтез сложного оксида типа Ni_XMg_{1-X}AI₂O₄ и исследование изменения свойств этой системы в зависимости от параметра X.

Мараев Михаил, Овсянников Роман, Паламарчук Дмитрий ФНМ, I курс, 2002 г.


Научный руководитель Баранов А. И.

Структура отчета:

- 1. Введение
- 2. Синтез образцов
- 3. Исследование образцов
- 4. Выводы
- 5. Список литературы

1. Введение.

Оксид состава $Ni_XMg_{1-X}Al_2O_4$ имеет структуру шпинели и поскольку содержит катионы переходного металла(Ni^{2+}) должен быть окрашен, причём окраска будет зависеть от мольной доли оксида никеля. Данная система на треугольной диаграмме занимает положение, обозначенное точками:

Таким образом, основной задачей нашей работы было получение по возможности однофазных образцов системы оксидов никеля-магния-алюминия и изучение строения и некоторых свойств этих веществ, в особенности цвета образующихся соединений при варьировании соотношений Ni²⁺ и Mg²⁺.

2. Синтез образцов.

Непосредственный синтез системы И3 ОКСИДОВ соответствующих металлов затруднён вследствие низкой скорости такой реакции и неоднородности смеси оксидов, поэтому для гомогенизации системы использовались два основных метода совместное спекание двойных сульфатов металла-аммония И осаждение карбонатов металлов. Первым способом синтезированы системы с значением Х: 1, 0.8, 0.6, 0.4, 0.2 и 0. Системы со значением X: 0.1 и 0.9 были получены карбонатным методом.

Исходные вещества:

сульфат алюминия восемнадцативодный, сульфат магния семиводный, сульфат никеля семиводный.

Вспомогательные вещества:

сульфат аммония, вода дистиллированная, сульфат аммония, нитрат бария, гидрокарбонат натрия.

I метод. Спекание двойных сульфатов.

1 этап.

Получение исходных реагентов (кристаллогидратов двойных сульфатов металла-аммония). Синтез осуществлялся методом совместного осаждения, то есть:

Сливались насыщенные растворы сульфата металла и $(NH_4)_2SO_4$ при t_{p-pa} =80*C, затем раствор тщательно перемешивался на магнитной мешалке и медленно охлаждался до комнатной температуры (20*C), выпадающие двойные сульфаты отфильтровывались на стеклянном фильтре, высушивались и после этого использовались. При этом было израсходовано и получено следующих веществ, в следующих количествах:

Исходное в-в	Масса (г)	Продукт	Масса (г)
Al ₂ (SO ₄) ₂ *18H ₂ O	65.3	(NH ₄)AI(SO ₄) ₂ *12H ₂ O	83
MgSO ₄ *7H ₂ O	20	$(NH_4)_2Mg(SO_4)_2*6H_2O$	20.5
NiSO ₄ *7H ₂ O	25.5	$(NH_4)_2Ni(SO_4)_2*6H_2O$	34
(NH ₄) ₂ SO ₄	35.5	-	-

2 этап.

Собственно синтез.

Для синтеза использовались навески исходных веществ в расчете на 1г. конечного сложного оксида $Ni_XMg_{1-X}AI_2O_4$:

Х	(NH ₄)Al(SO ₄) ₂ *12H ₂ O	(NH ₄) ₂ Mg(SO ₄) ₂ *6H ₂ O	(NH ₄) ₂ Ni(SO ₄) ₂ *6H ₂ O
1.0	5.119	0.000	2.232
0.8	5.329	0.424	1.859
0.6	5.558	0.883	1.454
0.4	5.800	1.385	1.013
0.2	6.080	1.933	0.530
0.0	6.380	2.535	0.000

прокаливались Полученные навески последовательно газовой горелке (для удаления NH_3), на высокотемпературной кислородной горелке (для удаления серы). В результате получались мелкодисперсные смеси оксидов AI, Mg и Ni. Далее эти смеси последовательно прокаливались тигельных печах, В 900°C 1200°С для температурах И получения однофазных образцов.

3 этап.

Исследование полученных образцов.

Обсуждение методов и результатов исследования будет произведено в другой главе данного отчёта.

II способ. Осаждение карбонатами.

Суть метода заключается в том, что в горячей воде растворяется смесь солей, содержащих нужные катионы, и гидрокарбоната натрия. При этом образуются нерастворимые в воде соединения (гидроксиды, карбонаты, основные карбонаты) металлов. Далее с осадком производят те же операции, что и в методе спекания двойных сульфатов.

1 этап.

Получение осадков необходимых катионов.

Для реакции, в одном случае, была использована смесь гидрокарбоната с простыми сульфатами, в другом, смесь гидрокарбонат - двойные сульфаты. Навески рассчитывались так же, как и в первом методе, на 1г. конечного продукта с 5%-ым избытком NaHCO₃:

Mayaruua	X	
Исходные вещества	0.1	0.9
NaHCO₃	4.617	4.064
(NH ₄)Al(SO ₄) ₂ *12H ₂ O	-	5.219
$(NH_4)_2Ni(SO_4)_2*6H_2O$	-	2.048
$(NH_4)_2Mg(SO_4)_2*6H_2O$	-	0.207
Al ₂ (SO ₄) ₂ *18H ₂ O	9,150	-
NiSO ₄ *7H ₂ O	0,271	-
MgSO ₄ *7H ₂ O	1,521	-

Реакция велась в большом (500мл) химическом стакане с использованием магнитной мешалки. Образовавшийся осадок отстаивался и промывался дистиллированной водой, до тех пор, пока содержание сульфат-анионов не стало достаточно мало. Содержание ионов SO_4^{2-} контролировалось с помощью нитрата бария.

2 этап

Отделение и прокаливание осадка.

Далее осадок отделялся от раствора центрифугированием и прокаливался сначала на горелке, потом в тигельной печи. Образцы перед прокаливанием в печи были спрессованы в таблетки, для увеличения скорости твердофазной реакции образования сложного оксида.

3 этап.

Исследование полученных образцов.

Обсуждение методов и результатов исследования будет произведено в другой главе данного отчёта.

3. Исследование образцов.

1. Рентгенофазовое исследование.

Основным средством контроля результатов работы был рентгенофазовый анализ, т.к. он позволяет точно определить однофазность полученного вещества. Для этого были получены порошкограммы всех образцов, кроме X=0.9. В результате было обнаружено, в той или иной степени, содержание, кроме целевой фазы, некоторых количеств NiO. вероятно, природа подобных дефектов обусловлена недостаточной длиной цикла высокотемпературной обработки ввиду недостатка времени при низкой скорости реакции; данные STOE таких образцов имеют небольшие отличия от эталонных.

Рентгенограммы исследованных образцов прилагаются, наиболее четкое совпадение с диаграммами из базы данных имеет место в случае с X= 0,4 и 0,8. Эти образцы прокаливались в тигельной печи около 6 часов при температуре 1500 градусов. Остальные были выдержаны в печи от 3 до 5 часов при температуре 1200 градусов, что, как выяснилось, не всегда достаточно для окончательного формирования однофазной структуры вещества.

После первой прокалки образцы имели весьма ощутимые расхождения в цвете: мы наблюдали белые, светло-оливковые, бледно-желтые, серые и даже темно-зеленые вещества. После спекания в высокотемпературной печи все порошки имели оттенки зеленовато-голубого цвета, причем чисто магний-алюминиевая система имела белую окраску, а насыщенность цвета остальных систем неуклонно повышалась с ростом содержания никеля.

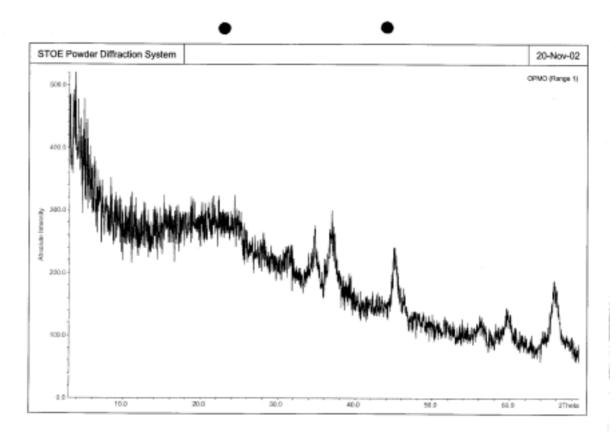
2. Спектроскопическое исследование.

Как видно и прилагаемого графика, спектр системы Ni0,6 имеет минимум в районе 500 нм и пики при 325 и 640 нм, что и обуславливает цветовую гамму вещества – насыщенные зеленовато-голубые тона.

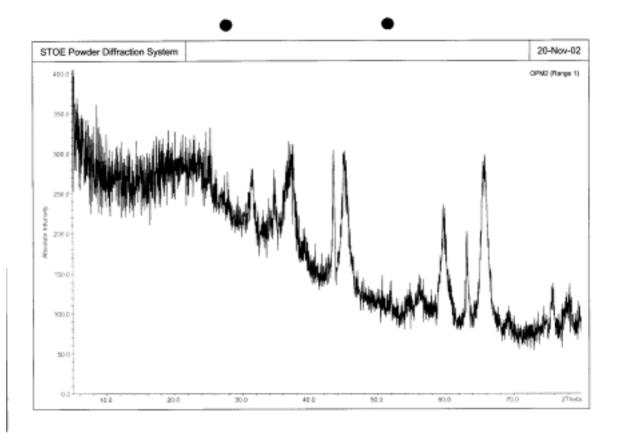
4. Выводы

- была впервые синтезирована система оксидов NiO-MgO-Al₂O₃
- свойства системы оказались весьма схожи с предсказуемыми
- был освоен ряд методов, пригодных для синтеза многих подобных соединений
- вещества были исследованы при помощи рентгенофазового и спектрального анализа
- было экспериментально установлено и показано, что на отрезке значений X от 0 до 1 система принимает цвета от белого до небесно – лазурного
- была установлена зависимость насыщенности цвета системы от параметра X, то есть от содержания NiO
- было экспериментально показано, что образцы, спрессованные в таблетки, гораздо лучше кристаллизуются

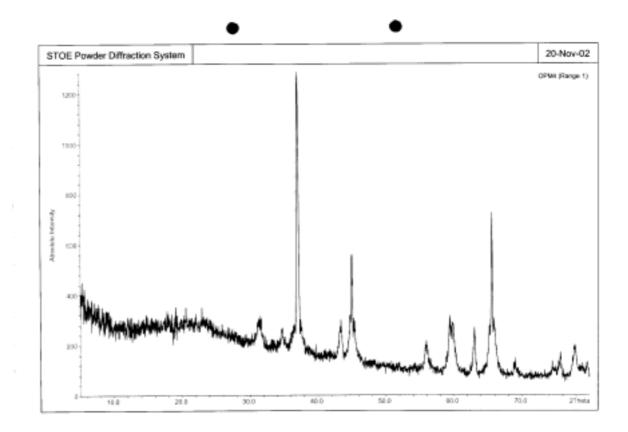
5. Литературный обзор.

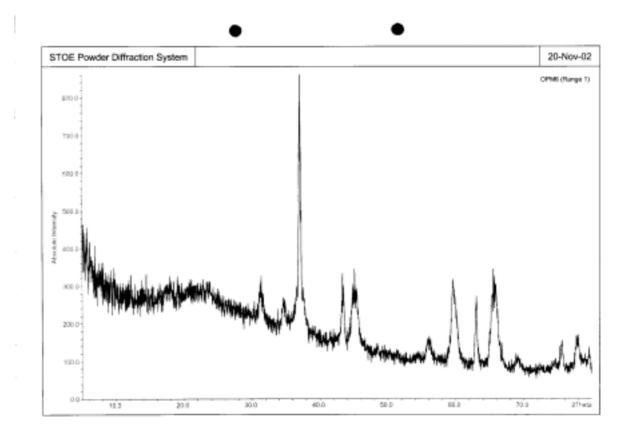

При синтезе и исследовании системы была использована следующая литература:

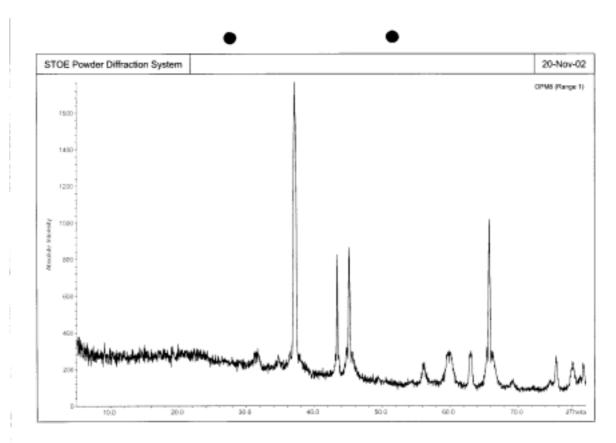
- **1.** Справочник химика. (Второе издание). "Химия", Москва, Ленинград, 1965.
- т. 1 строение неорганических соединений.
- т. 2 свойства неорганических соединений.
- т. 3 растворимость, температурная зависимость растворимости, равновесные гидратные фазы
- **2.** Справочник по растворимости. т. 1 (книга 1 и 2), Издательство АН СССР, Москва, Ленинград, 1962.
- **3.** Практикум по неорганической химии (под ред. В. П. Зломанова), изд-во МГУ, 1994.
- **4.** Ю. В. Карякин, И. И. Ангелов. Чистые химические вещества (руководство по приготовлению неорганических реактивов и препаратов). Москва, "Химия", 1974.
- **5.** Диаграммы состояния систем тугоплавких оксидов (справочник), "Наука", Ленинград.
- **6.** Уэллс А. Структурная неорганическая химия, "Мир", Москва, 1987, т. 1
- **7.** Руководство по неорганическому синтезу (под ред. Г. Брауэра), "Мир", Москва, 1985. т. 5.
- 8. Вест А. Химия твердого тела, изд-во "Мир", 1988.


6. Приложение.

К отчету прилагаются следующие файлы с данными рентгенофазового анализа:


1. Cucmeма MgAl₂O₄


2. Система $Ni_{0.2}Mg_{0.8}AI_2O_4$


3. Система $Ni_{0.4}Mg_{0.6}AI_2O_4$

{4.} Система Ni{0.6}Mg_{0.4}Al₂O₄

5. Система $Ni_{0.8}Mg_{0.2}AI_2O_4$

6. Cucmeмa NiAl₂O₄

