Московский Государственный Университет им. М.В.Ломоносова Факультет наук о материалах

Исследование твердых растворов хромзамещенных шпинелей $MgAl_{2-X}Cr_XO_4$

М.Ломаков, В.Максимов, Р.Сивов руководитель А.И.Жиров

Москва 2002

Содержание.

Содержание
Введение
Краткие сведения о структуре шпинели
Синтез прекурсоров
Синтез шпинелей
Предлагаемые методы, их преимущества и недостатки
Выводы
Список литературы
Приложение 10

Введение.

Основными целями данной работы стали приобретение основных навыков практической работы в процессе получения и исследования твердых растворов оксида хрома (III) в алюминате магния $MgAl_2O_4$ со структурой шпинели и попытка выбора оптимального пути синтеза подобного рода составов. Образующийся твердый раствор также имеет структурный тип шпинели, причем ионы хрома Cr^{3+} находятся в октаэдрических пустотах, частично заменяя ионы алюминия.

Шпинель свое название получила, вероятно, по форме кристаллов от латинского «шпинель» - маленький шип. Шпинель бывает почти всех цветов, но наиболее ценятся рубиново-красные камни, окраска которых обусловлена присутствием хрома. Крупные прозрачные камни встречаются очень редко. Особенно редка звездчатая шпинель с четырехлучевой звездой. Синяя разновидность шпинели чувствительна к повышению температуры. Темно-зеленую и черную непрозрачную шпинель называют цейлонитом (по старому названию острова Шри-Ланка), однако предпочтительнее для нее название «плеонаст», что по-гречески значит «излишек», за обилие граней у кристаллов. Бурую разновидность именуют пикотитом, желтую – рубицеллом (уменьшительная форма от французского «рубин»), а розовую – балас- или балэрубином (по месту находки в Афганистане).

Как самостоятельный минерал шпинель стали выделять лишь полтора столетия назад. До этого ее считали рубином (тем более, что в природе они встречаются вместе).

Основные месторождения: россыпи Мьянмы (район Могока) и Шри-Ланки. Значительно реже находки в Турции, Афганистане, Бразилии, Тайланде, США, Таджикистане (на Памире).

Шпинель относится к драгоценным камням I порядка.

Интересны несколько исторических камней – драгоценностей английской королевы – «Рубин черного принца» (овальный 5-сантиметровый камень из Британской короны) и «Рубин Тимура» (361 кар) из нагрудной цепи. В результате последних исследований было определено, что эти камни не рубины, как считалось ранее, а красная шпинель.

Исторический камень (398,72 кар) из Большой императорской короны Екатерины II также долго считался рубином.

Существует несколько способов получения твердых растворов. В нашей работе использовался высокотемпературный твердофазный синтез, смеси для последующего спекания были приготовлены двумя способами: механическим измельчением компонентов, а также их соосаждением с использованием NaHCO₃. Пытаясь получить продукт различных оттенков, мы изменяли и состав исходных смесей.

Для исследования полученных образцов, отожженных при различных температурах, проводился рентгенго-фазовый анализ (РФА). Параллельно с этим анализировался и цвет получаемых порошков путем снятия спектров отражения в видимой области. В следующих главах приводится теоретическое описание некоторых аспектов синтеза и методики, выбранные нами на основании теоретических данных, а также сделанные нами выводы.

Краткие сведения о структуре шпинели.

Структура шпинели. Как уже упоминалось выше, твердый раствор, получением которого мы занимались, имеет структуру шпинельного типа. Поэтому целесообразно рассмотреть решетку минерала $MgAl_2O_4$, называемого обычной шпинелью. Его структура представляет собой кубическую гранецентрированную плотнейшую упаковку анионов кислорода, катионы расположены в окта- и тетраэдрических пустотах, причем катионы с координационным числом 6, очевидно, располагаются в октаэдрической подрешетке и занимают 1/2 октаэдрических пустот, а с координационным числом 4- в тетраэдрической, занятой оказывается 1/8 часть тетраэрических пустот. В «идеальной» шпинели упаковка анионов кислорода действительно кубическая, но в реальных шпинелях решетка, как правило, искажена, т.к. размеры катионов в тетраэдрической

подрешетке часто превышают размеры тетраэдрических пустот идеальной структуры. Вследствие кислородные анионы сдвигаются от этих катионов в плоскости (111).

Для описания распределения двух сортов катионов по различным типам узлов в решетке вводится так называемый параметр катионного распределения. С учетом этого формулу шпинели AB_2O_4 можно записать следующим образом: $A_{1\text{-t}}B_t[A_tB_{2\text{-t}}]O_4$, где записанные в квадратных скобках катионы находятся в окатэдрическом окружении. С учетом катионного распределения можно ввести понятия нормальной (t=0) и обращенной (t=1) шпинелей. В качестве прмеров можно привести Mn_3O_4 (гаусманит) и Fe_3O_4 (магнетит), являющиеся нормальной и обращенной шпинелями соответственно $(Mn^{2+}[Mn_2^{3+}]O_4$ и $Fe^{3+}[Fe^{2+}Fe^{3+}]O_4$). Шпинели с промежуточными значениями t ($t \in (0,1)$) называют смешанными. Для определения параметра катионного распределения необходимо понимание того, в какой подрешетке разместися катион. В связи с этим необходимо рассотреть некоторые аспекты теории кристаллического поля (ТКП).

Рис. 1 Структура шпинели

Если рассмотреть тот же ион в тетраэрическом окружении, видно, что 3 d-орбитали, которые были выгодны в октаэдрическом поле, являются невыгодными в тетраэдрическом; выгодными становятся орбитали d_{z^2} и $d_{x^2-y^2}$. Исходя из этих положений можно построить диаграмму расщепления d-орбиталей в кристаллическом поле (рис. 1). На этой диаграмме символами e, eg, t2,

 t_{2g} обозначены расщепленные орбитали, Δ_t и Δ_o – разницы энергий расщепленных уровней.

Рис. 2 Расщепление d-орбиталей в тетра- и октаэлрических полях

Следует отметить, что уровень t_2 выше уровня нерасщепленных орбиталей на $2/5\Delta_t$, а t_{2g} на $2/5\Delta_0$ ниже начального уровня. Сравнивая Δ_t и Δ_0 , можно показать, что Δ_t = $4/9\Delta_0$ (для одного и того же катиона в окружении одних и тех же анионов).

Применим теперь все вышесказанное о d^1 -конфигурации для определения расположения электронов на d-орбиталях ионов d^2-d^{10} , расположенных в октаэдрах (рассуждения для тетраэдрического поля совершенно аналогичны). Очевидно, что второй и третий d-электроны в соответствии с правилом Хунда однозначно займут две свободные t_{2g} -орбитали. Т.о. ион с

конфигурацией d^3 , помещенный в октаэдрическое поле, будет иметь конфигурацию t_{2g}^3 . Четвертый электрон может занять как t_{2g} , так и e_g -орбитали. Все будет зависеть от соотношения энергии спаривания электрона (P) для данного иона и Δ_o . В слабом поле (P> Δ_o) электроны будут располагаться так же, как и в свободном ионе, образовывая высокоспиновую конфигурацию; усиление поля до того момента, когда $P<\Delta_o$, приведет к образованию низкоспиновых систем. Уровень спиновой мультиплетности т.о. зависит от силы поля и от самого иона. К примеру, гексааквакомплекс Fe^{2+} (конфигурация d^6) высокоспиновый — $t_{2g}^{4}e_g^{2}$, а гексацианокомплекс того же катиона низкоспиновый — t_{2g}^{6}.

Каждый d-электрон катиона в кристаллическом поле характеризуется энергией взаимодействия с этим полем. Общая энергия взаимодействия катиона с электростатическим полем будет складываться из соответствующих энергий каждого d-электрона. Возможны случаи, когда катион имеет одинаковые энергии взаимодействия с тетра- и октаэдрическим окружением. Исходя из предыдущих утверждений, можно сказать, что это происходит при конфигурациях d^0 ($t_{2g}^0 e_g^0 - e^0 t_2^0$), высокоспиновая d^5 ($t_{2g}^3 e_g^2 - e^2 t_2^3$) и d^{10} ($t_{2g}^2 e_g^4 - e^4 t_2^6$). Несложно убедиться, что в этих трех случаях энергия взаимодействия с обоими видами окружений одинакова. Для удобства вводят так называемую энергию предпочтения к октаузлам, которая равна разности энергий в тетра- и октаэдрическом окружении. Для трех вышеупомянутых случаев энергия предпочтения катиона к октаузлу равна нулю. В общем случае это не так.

Возвращаясь к параметру катионного распределения, можно сказать, что он тесно связан с энергией предпочтения катионов к определенному типу узлов кристаллической решетки. Кроме энергии препочтения t зависит от температуры (с повышением температуры происходит разупорядочивание), а также от соотношения между количествами ионов. Возможен случай, когда энергии препочтения к октаэдрическим пустотам разных сортов катионов в шпинели равны между собой (это происходит, в первую очередь, когда обе энергии равны нулю). В этой ситуации образуются беспорядочные шпинели, в которых катионы распределены случайно.

Синтез прекурсоров.

Получение $(NH_4)Cr(SO_4)_2*12H_2O$.

К подкисленному раствору 10 г. дихромата аммония в 50 мл. воды по каплям добавлялся этиловый спирт (V = 5,5 мл.). При этом следилось, чтобы температура реакционной смеси не превышала 40° С, т. к. более высокие температуры приводят к разложению квасцов. Полученные кристаллы были отфильтрованы, промыты и высушены. Масса полученных квасцов 31,53 г. Выход 82,4 %.

 $(NH_4)_2Cr_2O_7 + 3C_2H_5OH + 4H_2SO_4 + 17H_2O = 2NH_4Cr(SO_4)_2*12H_2O + 3CH_3COH$

Получение $(NH_4)_2Mg(SO_4)_2*6H_2O$.

К насыщенному при 70° С раствору 24,6 г. $MgSO_4*7H_2O$ в 40 мл. воды приливали насыщенный при той же температуре раствор (NH_4)₂ SO_4 . Полученные кристаллы были отфильтрованы и высушены. Масса полученных шенитов 30,502 г. Выход 84,7 %.

$$(NH_4)_2SO_4 + MgSO_4*7H_2O = (NH_4)_2Mg(SO_4)_2*6H_2O + H_2O$$

Получение $(NH_4)Al(SO_4)_2*12H_2O$.

Алюмоаммонийные квасцы были взяты готовые.

Синтез шпинелей.

При синтезе шпинелей из прекурсоров нами было использовано 2 метода: механическая гомогенизация и химическая гомогенизация.

Механическая гомогенизация.

Была приготовлена смесь прекурсоров в рассчитанных стехиометрических соотношениях, которые соответствуют 5 процентам замещения алюминия на хром в магний алюминиевой шпинели. Эти смеси перетерли в ступке, и прокаливали на газовой горелке. Сначала смесь растворялась в своей кристаллизационной воде, закипала и застывала. Эти застывшие вещества перетерли в ступке и прокаливали на воздуходувной горелке, при этом выделялись NH₃ и SO₃ – это было видно по выделяющемуся белому газу. После этого вещества помещались в печь при 900° на 2 часа, а потом при 1200° на 3 часа. После отжигов полученные вещества исследовались рентгенофазовым анализом, и спектроскопией. Аналогичным образом были получены вещества с содержанием хрома 0, 10, 15, 20, 25 и 100 процентов.

Уравнение реакции.

$$(NH_4)_2MgSO_4*6H_2O + XNH_4Cr(SO_4)_2*12H_2O + (2-X)NH_4Al(SO_4)_2*12H_2O = MgAl_{2-X}Cr_XO_4 + 4NH_3 + 6SO_3 + 32H_2O$$

Химическое гомогенизация(соосаждение).

Осаждение гидроксидов проводили гидрокарбонатом натрия, причем на 1 моль двухзарядного катиона надо взять 2 моль соды, а на 1 моль трехзарядного — три моль соды. Сода бралась в небольшом избытке от рассчитанного количества, чтобы полностью осадить ионы. Полученную смесь растворяют в кипящей воде на магнитной мешалке, и после этого нагревают до закипания. Выпавший осадок промывался в среднем около 7 раз, чтобы полностью избавиться от ионов натрия и сульфат ионов. Полученный раствор (над осадком) не давал помутнения с раствором нитрата бария. Осадок отфильтровали и высушили на фильтровальной бумаге. После перетирания прокалили на газовой горелке, а затем и в печи при 900° и 1200°. Этим методом были получена вещества с содержанием хрома 5 и 10 процентов.

Уравнения реакций.

```
Осаждение: 2Mg^{2+} + 4HCO_3^- = 2Mg (OH)_2 + 4CO_2 MgSO_4 + H_2O = (MgOH)_2SO_4 + H_2SO_4 2Al^{3+} + 6HCO_3^- = 2Al (OH)_3 + 6CO_2 2Cr^{3+} + 6HCO_3^- = 2Cr (OH)_3 + 6CO_2 Прокаливание: Mg (OH)_2 = MgO + H2O
```

2Al (OH)
$$_3$$
 = Al $_2$ O $_3$ + 3H $_2$ O
2Cr (OH) $_3$ = Cr $_2$ O $_3$ + 3H $_2$ O
MgO + (1-0.5x) Al $_2$ O $_3$ + 0.5xCr $_2$ O $_3$ = MgAl $_{2-x}$ Cr $_x$ O $_4$

Предлагаемые методы, их преимущества и недостатки.

Таблица 1 В полях этой таблицы преведены температуры отжигов в °С. Знак **×** обозначает, что данная работа не выполнена.

Метод приготавления смеси для	Процент замещения хрома в магнийалюминиевой шпинели,						
•	мольные проценты						
вгижто	0	5	10	15	20	25	100
Соосаждение добавлением							
порошков компонентов и осадителя	900,1200	900,1200	900,1200	×	×	×	×
NaHCO ₃							
Механичекое перетирание	900,	900,	900,	900,	900,	900,	900,
порошков исходных компонентов	1200	1200	1200	1200	1200	1200	1200

Выбраны методики, позволяющие достичь разной степени гомогенизации смеси для отжига. Недостаточность гомогенизации проявляется в присутствии серых оттенков в цвете твердого раствора после отжига. Также можно сравнивать разные методики по мелкодисперсности частиц смеси для спекания. В смесях с наиболее мелкодисперсными частицами кристаллизация начинается при более низкой температуре.

Таблица 2 посвящена теоретическому сравнению методик между собой. В этой таблице приведены только основные положения, обосновывающие наш выбор такого набора методик.

Таблица 2

Метод приготовления смеси для отжига	Плюсы	Минусы
Соосаждение добавлением порошков компонентов и осадителя NaHCO ₃	одновременное попадание в раствор всех компонентов и осадителя	не учтена кинетика растворения исходных компонентов
Механичекое перетирание порошков исходных компонентов	простота, возможность сравнения с другими метолами	низкая гомогенность

Выводы.

- 1. Были получены однофазные образцы состава $MgAl_{2-X}Cr_XO_4$ для $X=0,\,0.1,\,0.2,\,0.3,\,0.4,\,0.5,\,2$
- 2. Полученные образцы были охарактеризованы методами РФА и спектроскопии поглощения в видимой области.
- 3. Лучше всего спекаются смеси, полученные соосаждением с использованием растворов. Они начинают активно закристаллизовываться уже при 800°С. Метод химической гомогенизации даёт образцы с более интенсивной окраской.

4. Смеси, полученные механическим перетиранием, спекаются значительно хуже остальных. Это наглядно демонстрирует разницу в дисперсности смесей для спекания, полученных разными методами.

Израсходовано: $41.47 \Gamma NH_4Al(SO_4)_2*12H_2O$

24.6 r MgSO₄*7H₂O 10 r (NH₄)₂Cr₂O₇ 13.2 r (NH₄)₂SO₄

Разбит 1 тигель.

Сдано: 3.89 г (NH₄)₂Cr₂O₇

 $5,67 \Gamma (NH_4)_2Mg(SO_4)_2*6H_2O$

В данной работе многие вопросы оставлены открытыми. Следует подчеркнуть, что подобного рода системы изучены далеко не полностью. Решение многих задач, связанных с кристаллической структурой подобного рода систем носит, в первую очередь, фундаментальный характер. В завершение хотелось бы выразить огромную благодарность А.И.Жирову и А.А.Вертегелу за моральную и физическую помощь, оказанную ими.

Список литературы

- 1. Бурцев А.К., Гуськова Т.В. Драгоценные камни М: Примат 1992
- 2. Коттон Ф., Уилкинсон Дж. Современная неорганическая химия (т. 3) М: Мир 1969
- 3. Практикум по неорганической химии (под руководством Зломанова В.П.) Издательство МГУ 1994
- 4. Справочник химика (т. 3) М: Химия 1965

Приложение

 Γ рафики растворимости (г/100г воды) $MgSO_4$, $(NH_4)_2SO_4$, $(NH_4)_2Mg(SO_4)_2$ и таблицы их растворимостей (г/100 г воды).

t°C	s(MgSO ₄)
0	25,5
1,8	26,7
10	30,4
15	32,6
20	35,1
25	37,4
30	39,7
40	44,7
48,1	49,5
50	50,4
60	54,8
70	59,2
80	54,8

t°C	$s((NH_4)_2SO_4)$		
0	70,1		
10	72,7		
15	74	2 -	
20	75,4	t°C	$s(Mg(NH_4)_2(SO_4)_2)$
25	76,9	0	11,83
30	78,1	10	14,61
40	81,2	20	17,97
50	84,3	25	19,69
60	87,4	30	21,71
70	90,6	40	25,8
80	94,1	50	30,17
90	97,8	60	35,17
100	102	80	48,32
		100	65,73

Спектры $P\Phi A$ для образцов $MgAl_{2-X}Cr_XO_4$ (X=0, 0.5, 2).

Спектры поглощения в видимой области для образцов $MgAl_{2-X}Cr_XO_4$ ($X=0.2,\ 0.5$).

Параметр решетки шпинели в зависимости от процентного содержания Cr в образцах $MgAl_{2-X}Cr_XO_4$.

Содержание Сг в образце, %	Параметр решетки, Å
0	8.064(7)
5	8.0720(23)
10	8.111(9)
15	8.130(10)
20	8.152(8)
25	8.174(6)
100	8.306(24)