Исследование твердых растворов хромзамещенных шпинелей MgAl_{2-x}Cr_xO₄

М.Ломаков, В.Максимов, Р.Сивов руководитель А.И.Жиров

> Москва 2002

Содержание.

Содержание	2
Введение	3
Краткие сведения о структуре шпинели	3
Синтез прекурсоров	5
Синтез шпинелей	6
Предлагаемые методы, их преимущества и недостатки	7
Выводы	7
Список литературы	9
Приложение	10
-	

Введение.

Основными целями данной работы стали приобретение основных навыков практической работы в процессе получения и исследования твердых растворов оксида хрома (III) в алюминате магния MgAl₂O₄ со структурой шпинели и попытка выбора оптимального пути синтеза подобного рода составов. Образующийся твердый раствор также имеет структурный тип шпинели, причем ионы хрома Cr³⁺ находятся в октаэдрических пустотах, частично заменяя ионы алюминия.

Шпинель свое название получила, вероятно, по форме кристаллов от латинского «шпинель» маленький шип. Шпинель бывает почти всех цветов, но наиболее ценятся рубиново-красные камни, окраска которых обусловлена присутствием хрома. Крупные прозрачные камни встречаются очень редко. Особенно редка звездчатая шпинель с четырехлучевой звездой. Синяя разновидность шпинели чувствительна к повышению температуры. Темно-зеленую и черную непрозрачную шпинель называют цейлонитом (по старому названию острова Шри-Ланка), однако предпочтительнее для нее название «плеонаст», что по-гречески значит «излишек», за обилие граней у кристаллов. Бурую разновидность именуют пикотитом, желтую – рубицеллом (уменьшительная форма от французского «рубин»), а розовую – балас- или балэрубином (по месту находки в Афганистане).

Как самостоятельный минерал шпинель стали выделять лишь полтора столетия назад. До этого ее считали рубином (тем более, что в природе они встречаются вместе).

Основные месторождения: россыпи Мьянмы (район Могока) и Шри-Ланки. Значительно реже находки в Турции, Афганистане, Бразилии, Тайланде, США, Таджикистане (на Памире).

Шпинель относится к драгоценным камням І порядка.

Интересны несколько исторических камней – драгоценностей английской королевы – «Рубин черного принца» (овальный 5-сантиметровый камень из Британской короны) и «Рубин Тимура» (361 кар) из нагрудной цепи. В результате последних исследований было определено, что эти камни не рубины, как считалось ранее, а красная шпинель.

Исторический камень (398,72 кар) из Большой императорской короны Екатерины II также долго считался рубином.

Существует несколько способов получения твердых растворов. В нашей работе использовался высокотемпературный твердофазный синтез, смеси для последующего спекания были приготовлены двумя способами: механическим измельчением компонентов, а также их соосаждением с использованием NaHCO₃. Пытаясь получить продукт различных оттенков, мы изменяли и состав исходных смесей.

Для исследования полученных образцов, отожженных при различных температурах, проводился рентгенго-фазовый анализ (РФА). Параллельно с этим анализировался и цвет получаемых порошков путем снятия спектров отражения в видимой области. В следующих главах приводится теоретическое описание некоторых аспектов синтеза и методики,

выбранные нами на основании теоретических данных, а также сделанные нами выводы.

Краткие сведения о структуре шпинели.

Структура шпинели. Как уже упоминалось выше, твердый раствор, получением которого мы занимались, имеет структуру шпинельного типа. Поэтому целесообразно рассмотреть решетку минерала MgAl₂O₄, называемого обычной шпинелью. Его структура представляет собой кубическую гранецентрированную плотнейшую упаковку анионов кислорода, катионы расположены в окта- и тетраэдрических пустотах, причем катионы с координационным числом 6, очевидно, располагаются в октаэдрической подрешетке и занимают 1/2 октаэдрических пустот, а с координационным числом 4 – в тетраэдрической, занятой оказывается 1/8 часть тетраэрических пустот. В «идеальной» шпинели упаковка анионов кислорода действительно кубическая, но в реальных шпинелях решетка, как правило, искажена, т.к. размеры катионов в тетраэдрической

подрешетке часто превышают размеры тетраэдрических пустот идеальной структуры. Вследствие кислородные анионы сдвигаются от этих катионов в плоскости (111).

Для описания распределения двух сортов катионов по различным типам узлов в решетке вводится так называемый параметр катионного распределения. С учетом этого формулу шпинели AB₂O₄ можно записать следующим образом: A_{1-t}B_t[A_tB_{2-t}]O₄, где записанные в квадратных скобках катионы находятся в окатэдрическом окружении. С учетом катионного распределения можно ввести понятия нормальной (t = 0) и обращенной (t = 1) шпинелей. В качестве прмеров можно привести Mn₃O₄ (гаусманит) и Fe₃O₄ (магнетит), являющиеся нормальной и обращенной шпинелями соответственно (Mn²⁺[Mn₂³⁺]O₄ и Fe³⁺[Fe²⁺Fe³⁺]O₄). Шпинели с промежуточными значениями t (t \in (0,1)) называют смешанными. Для определения параметра катионного распределения необходимо понимание того, в какой подрешетке разместися катион. В связи с этим необходимо рассотреть некоторые аспекты теории кристаллического поля (ТКП).

Рис. 1 Структура шпинели

Расщепление d-орбиталей в кристаллическом поле. В отличие от свободного иона, у которого все пять d-орбиталей вырождены, ион, находящийся в электростатическом поле своего окружения, имеет различные по энергии d-орбитали. Рассмотрим сначала ион с одним d-электроном, октаэдрически окруженный анионами кислорода, которые в рамках ТКП считаются точечными зарядами. Несложно заметить, что ветви d_{z^2} и $d_{x^2-y^2}$ -орбиталей направлены к анионам окружения, лежащим на оси z и в плоскости xy соответственно. Т.о. нахождение d-электрона на этих орбиталях невыгодно, т.к. приводит к кулоновскому отталкиванию и, следовательно, повышению энергии системы. Исходя из того, что d_{z^2} -орбиталь можно представить в виде линейной комбинации $d_{z^2-x^2}$ и $d_{z^2-y^2}$ -орбиталей (d_{xy} , d_{yz} и d_{x2}) находятся между отрицательными зарядами и являются энергитически более выгодными для электрона. Если рассмотреть тот же ион в тетраэрическом окружении, видно, что 3 d-орбитали, которые были выгодны в октаэдрическом поле, являются невыгодными в тетраэдрическом; выгодными становятся орбитали d_{z^2} и $d_{x^2-y^2}$. Исходя из этих положений можно построить диаграмму

расщепления d-орбиталей в кристаллическом поле (рис. 1). На этой диаграмме символами e, eg, t2,

 t_{2g} обозначены расщепленные орбитали, Δ_t и Δ_o – разницы энергий расщепленных уровней.

Расщепление d-орбиталей в тетра- и октаэлрических полях

разницы энергий расщепленных уровней. Следует отметить, что уровень t_2 выше уровня нерасщепленных орбиталей на $2/5\Delta_t$, а t_{2g} на $2/5\Delta_o$ ниже начального уровня. Сравнивая Δ_t и Δ_o , можно показать, что $\Delta_t = 4/9\Delta_o$ (для одного и того же катиона в окружении одних и тех же анионов).

Применим теперь все вышесказанное о d¹-конфигурации для определения расположения электронов на d-орбиталях ионов d² – d¹⁰, расположенных в октаэдрах (рассуждения для тетраэдрического поля совершенно аналогичны). Очевидно, что второй и третий d-электроны в соответствии с правилом Хунда однозначно займут две свободные t_{2g} -орбитали. Т.о. ион с

конфигурацией d³, помещенный в октаэдрическое поле, будет иметь конфигурацию t_{2g}^{3} . Четвертый электрон может занять как t_{2g} , так и e_{g} -орбитали. Все будет зависеть от соотношения энергии спаривания электрона (P) для данного иона и Δ_{0} . В слабом поле (P> Δ_{0}) электроны будут располагаться так же, как и в свободном ионе, образовывая высокоспиновую конфигурацию; усиление поля до того момента, когда P< Δ_{0} , приведет к образованию низкоспиновых систем. Уровень спиновой мультиплетности т.о. зависит от силы поля и от самого иона. К примеру, гексааквакомплекс Fe²⁺ (конфигурация d⁶) высокоспиновый – $t_{2g}^{4}e_{g}^{2}$, а гексацианокомплекс того же катиона низкоспиновый – t_{2g}^{6} .

Каждый d-электрон катиона в кристаллическом поле характеризуется энергией взаимодействия с этим полем. Общая энергия взаимодействия катиона с электростатическим полем будет складываться из соответствующих энергий каждого d-электрона. Возможны случаи, когда катион имеет одинаковые энергии взаимодействия с тетра- и октаэдрическим окружением. Исходя из предыдущих утверждений, можно сказать, что это происходит при конфигурациях d⁰ ($t_{2g}^{0}e_{g}^{0} - e^{0}t_{2}^{0}$), высокоспиновая d⁵ ($t_{2g}^{3}e_{g}^{2} - e^{2}t_{2}^{3}$) и d¹⁰ ($t_{2g}^{6}e_{g}^{4} - e^{4}t_{2}^{6}$). Несложно убедиться, что в этих трех случаях энергия взаимодействия с обоими видами окружений одинакова. Для удобства вводят так называемую энергию предпочтения к октаузлам, которая равна разности энергий в тетра- и октаэдрическом окружении. Для трех вышеупомянутых случаев энергия предпочтения катиона к октаузлу равна нулю. В общем случае это не так.

Возвращаясь к параметру катионного распределения, можно сказать, что он тесно связан с энергией предпочтения катионов к определенному типу узлов кристаллической решетки. Кроме энергии препочтения t зависит от температуры (с повышением температуры происходит разупорядочивание), а также от соотношения между количествами ионов. Возможен случай, когда энергии препочтения к октаэдрическим пустотам разных сортов катионов в шпинели равны между собой (это происходит, в первую очередь, когда обе энергии равны нулю). В этой ситуации образуются беспорядочные шпинели, в которых катионы распределены случайно.

Синтез прекурсоров.

Получение $(NH_4)Cr(SO_4)_2*12H_2O$.

К подкисленному раствору 10 г. дихромата аммония в 50 мл. воды по каплям добавлялся этиловый спирт (V = 5,5 мл.). При этом следилось, чтобы температура реакционной смеси не превышала 40° С, т. к. более высокие температуры приводят к разложению квасцов. Полученные кристаллы были отфильтрованы, промыты и высушены. Масса полученных квасцов 31,53 г. Выход 82,4 %.

$$(NH_4)_2Cr_2O_7 + 3C_2H_5OH + 4H_2SO_4 + 17H_2O = 2NH_4Cr(SO_4)_2*12H_2O + 3CH_3COH$$

Получение $(NH_4)_2Mg(SO_4)_2*6H_2O$.

К насыщенному при 70°С раствору 24,6 г. MgSO₄*7H₂O в 40 мл. воды приливали насыщенный при той же температуре раствор (NH₄)₂SO₄. Полученные кристаллы были отфильтрованы и высушены. Масса полученных шенитов 30,502 г. Выход 84,7 %.

 $(NH_4)_2SO_4 + MgSO_4*7H_2O = (NH_4)_2Mg(SO_4)_2*6H_2O + H_2O$

Получение $(NH_4)Al(SO_4)_2*12H_2O$.

Алюмоаммонийные квасцы были взяты готовые.

Синтез шпинелей.

При синтезе шпинелей из прекурсоров нами было использовано 2 метода: механическая гомогенизация и химическая гомогенизация.

Механическая гомогенизация.

Была приготовлена смесь прекурсоров в рассчитанных стехиометрических соотношениях, которые соответствуют 5 процентам замещения алюминия на хром в магний алюминиевой шпинели. Эти смеси перетерли в ступке, и прокаливали на газовой горелке. Сначала смесь растворялась в своей кристаллизационной воде, закипала и застывала. Эти застывшие вещества перетерли в ступке и прокаливали на воздуходувной горелке, при этом выделялись NH₃ и SO₃ – это было видно по выделяющемуся белому газу. После этого вещества помещались в печь при 900° на 2 часа, а потом при 1200° на 3 часа. После отжигов полученные вещества исследовались рентгенофазовым анализом, и спектроскопией. Аналогичным образом были получены вещества с содержанием хрома 0, 10, 15, 20, 25 и 100 процентов.

Уравнение реакции.

 $(NH_4)_2MgSO_4*6H_2O + XNH_4Cr(SO_4)_2*12H_2O + (2-X)NH_4Al(SO_4)_2*12H_2O = MgAl_{2-X}Cr_XO_4 + 4NH_3 + 6SO_3 + 32H_2O$

Химическое гомогенизация(соосаждение).

Осаждение гидроксидов проводили гидрокарбонатом натрия, причем на 1 моль двухзарядного катиона надо взять 2 моль соды, а на 1 моль трехзарядного – три моль соды. Сода бралась в небольшом избытке от рассчитанного количества, чтобы полностью осадить ионы. Полученную смесь растворяют в кипящей воде на магнитной мешалке, и после этого нагревают до закипания. Выпавший осадок промывался в среднем около 7 раз, чтобы полностью избавиться от ионов натрия и сульфат ионов. Полученный раствор (над осадком) не давал помутнения с раствором нитрата бария. Осадок отфильтровали и высушили на фильтровальной бумаге. После перетирания прокалили на газовой горелке, а затем и в печи при 900° и 1200°. Этим методом были получена вещества с содержанием хрома 5 и 10 процентов.

Уравнения реакций.

Осаждение: $2Mg^{2^+} + 4HCO_3^- = 2Mg (OH)_2 + 4CO_2$ $MgSO_4 + H_2O = (MgOH)_2SO_4 + H_2SO_4$ $2A1^{3^+} + 6HCO_3^- = 2A1 (OH)_3 + 6CO_2$ $2Cr^{3^+} + 6HCO_3^- = 2Cr (OH)_3 + 6CO_2$ Прокаливание: $Mg (OH)_2 = MgO + H2O$ $\begin{array}{l} 2 Al (OH)_{3} = Al_{2}O_{3} + 3H_{2}O \\ 2 Cr (OH)_{3} = Cr_{2}O_{3} + 3H_{2}O \\ MgO + (1\text{-}0.5x) \ Al_{2}O_{3} + 0.5xCr_{2}O_{3} = MgAl_{2\text{-}x}Cr_{x}O_{4} \end{array}$

Предлагаемые методы, их преимущества и недостатки.

Таблица 1

В полях этой таблицы преведены температуры отжигов в °С. Знак × обозначает, что данная работа не выполнена.

Метол приготавления смеси лля	Процент замещения хрома в магнийалюминиевой шпинели,						
	мольные проценты						
отжига	0	5	10	15	20	25	100
Соосаждение добавлением порошков компонентов и осадителя NaHCOa	900,1200	900,1200	900,1200	×	×	×	×
TrailCO3							

Выбраны методики, позволяющие достичь разной степени гомогенизации смеси для отжига. Недостаточность гомогенизации проявляется в присутствии серых оттенков в цвете твердого раствора после отжига. Также можно сравнивать разные методики по мелкодисперсности частиц смеси для спекания. В смесях с наиболее мелкодисперсными частицами кристаллизация начинается при более низкой температуре.

Таблица 2 посвящена теоретическому сравнению методик между собой. В этой таблице приведены только основные положения, обосновывающие наш выбор такого набора методик.

Таблица 2

Метод приготовления смеси для отжига	Плюсы	Минусы
Соосаждение добавлением порошков компонентов и осадителя NaHCO ₃	одновременное попадание в раствор всех компонентов и осадителя	не учтена кинетика растворения исходных компонентов
Механичекое перетирание порошков исходных компонентов	простота, возможность сравнения с другими методами	низкая гомогенность

Выводы.

- 1. Были получены однофазные образцы состава MgAl_{2-X}Cr_XO₄ для X = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 2
- 2. Полученные образцы были охарактеризованы методами РФА и спектроскопии поглощения в видимой области.
- 3. Лучше всего спекаются смеси, полученные соосаждением с использованием растворов. Они начинают активно закристаллизовываться уже при 800°С. Метод химической гомогенизации даёт образцы с более интенсивной окраской.

4. Смеси, полученные механическим перетиранием, спекаются значительно хуже остальных. Это наглядно демонстрирует разницу в дисперсности смесей для спекания, полученных разными методами.

Израсходовано: 41.47 г NH₄Al(SO₄)₂*12H₂O 24.6 г MgSO₄*7H₂O 10 г (NH₄)₂Cr₂O₇ 13.2 г (NH₄)₂SO₄ Разбит 1 тигель. Сдано: 3.89 г (NH₄)₂Cr₂O₇ 5,67 г (NH₄)₂Mg(SO₄)₂*6H₂O

В данной работе многие вопросы оставлены открытыми. Следует подчеркнуть, что подобного рода системы изучены далеко не полностью. Решение многих задач, связанных с кристаллической структурой подобного рода систем носит, в первую очередь, фундаментальный характер. В завершение хотелось бы выразить огромную благодарность А.И.Жирову и А.А.Вертегелу за моральную и физическую помощь, оказанную ими.

Список литературы

- 1. Бурцев А.К., Гуськова Т.В. Драгоценные камни М: Примат 1992
- 2. Коттон Ф., Уилкинсон Дж. Современная неорганическая химия (т. 3) М: Мир 1969
- 3. Практикум по неорганической химии (под руководством Зломанова В.П.) Издательство МГУ 1994
- 4. Справочник химика (т. 3) М: Химия 1965

Приложение

Графики растворимости (г/100г воды) MgSO₄, (NH₄)₂SO₄, (NH₄)₂Mg(SO₄)₂ и таблицы их растворимостей (г/100 г воды).

t°C	s(MgSO ₄)
0	25,5
1,8	26,7
10	30,4
15	32,6
20	35,1
25	37,4
30	39,7
40	44,7
48,1	49,5
50	50,4
60	54,8
70	59,2
80	54,8

t°C	s((NH ₄) ₂ SO ₄)
0	70,1
10	72,7
15	74
20	75,4
25	76,9
30	78,1
40	81,2
50	84,3
60	87,4
70	90,6
80	94,1
90	97,8
100	102

t°C	s(Mg(NH ₄) ₂ (SO ₄) ₂)
0	11,83
10	14,61
20	17,97
25	19,69
30	21,71
40	25,8
50	30,17
60	35,17
80	48,32
100	65,73

Спектры РФА для образцов $MgAl_{2-X}Cr_XO_4$ (X= 0, 0.5, 2).

Спектры поглощения в видимой области для образцов $MgAl_{2-X}Cr_XO_4$ (X= 0.2, 0.5).

Параметр решетки шпинели в зависимости от процентного содержания Cr в образцах MgAl_{2-X}Cr_XO₄.

Содержание Сг в образце, %	Параметр решетки, Å
0	8.064(7)
5	8.0720(23)
10	8.111(9)
15	8.130(10)
20	8.152(8)
25	8.174(6)
100	8.306(24)